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We investigate the synchrotron sel-Compton process (in which seed photons for inverse Compton
emission is supplied by synchrotron emission) in the plane-parallel shell taking the shock structure
into account. We find that in fast cooling (when the electron cooling time Afeoot is shorter than the
shock crossing time Atfg,,) the one-zone approximation underestimates the energy density of the
seed soft photons by a factor of ~ {Adayn/YAcoot), Where 7y is the Lorentz factor of the shock in the

shocked fluid frame. This factor may be order of unity (e.g., In f ~In 10° ~ 14 in gamma-ray bursts)
so that inverse Compton may cool electrons “ultra” fast in such as gamma-ray bursts, blazars and

microquasars.

I. INTRODUCTION

Relativistic shocks often arise in astrophysics when a
faster flow hits upon a slower one such as In gamma-
ray bursts (GRBs) (e.g., Piran 1999), blazars (e.g., Inoue
& Takahara 1996; Kino, Takahara & Kusunose 2002),
microquasars (e.g., Levinson & Waxman 2001; Kaiser,
Sunyacv & Spruit 2000) and so on. In the relativistic
shocks, the kinetic energy of the flow turns into the in-
ternal one, and some fraction of the internal energy is
distributed to electrons and magnetic fields. The elec-
trons are accelerated in the shock front to a power law
distribution, while the magnetic fields are amplified by
the shocks. Under these conditions, the accelerated elec-
trons radiate nonthermal emission, such as synchrotron
and inverse Compton emission. In this Letter we will
consider the synchrotron self-Compton process, in which
synchrotron photons from the electrons are the seed pho-

tons Lo be scattered.

The ratio of the inverse Compton to synchrotron lu-
minosity Y is one of the most important quantity. Since
the nonthermal spectrum of the GRBs or the blazars 1n-
dicates that the sources are optically thin, only a negli-
gible fraction of synchrotron photons is scattered. How-
ever, depending on the parameters, the Compton to syn-
chrotron ratio Y can be larger than unity so that the
ratio Y is essential for the estimate of the total energy.
In fact, for example, if the TeV signal detected by the
Milagro group is truly from GRB 970417a, the TeV flu-
ence must be at least 10 times greater than the sub-MeV
fluence of this GRB (Atkins et al. 2000). The ratio Y
also affect the cooling time of the electrons. Furthermore
the ratio Y may be important for the plasma physics, if
we inversely estimate the physical parameters from the
observed ratio of the inverse Compton to synchrotron lu-

minosity.

So far the Compton to synchretren ratio ¥ has been

estimated from the one-zone argument as follows (Sari,
Narayan & Piran 1996; Panaitescu & Kumar 2000; Sari
& Bsin 2001). Let us consider hereafter the fast cooling
regime, that is, all the electron energy is radiated away
within a dynamical time, and only single scatterings as-
suming that the higher order inverse Compton 1s sup-
pressed by the Klein-Nishina effect (Rybicki & Lightiman

1979). Assuming the isotropic distribution of electrons,
the ratio Y is equal to the ratio of the energy density in
soft radiation to magnetic field energy density (Rybicki
& Lightman 1979). Then, we have

Usyn Ue/(1+Y) €e (1)

- Li¢ U,
Y= ep(1+Y)

L syn U B UB UB

where Uy, Usyn, Up and U, are the energy density of the
seed photons, the synchrotron radiation, the magnetic
ficlds, and the relativistic electrons, respectively. The
parameters ¢, and ¢p are fractions of shock energy that go
into the electrons and the magnetic energy, respectively.

“The solution of the equation (1) is
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so that we have
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At present the parameters € and €p are highly uncertain.

In this Letter, we will show that the formula (3} is not
applicable when the shock crossing time Atgyy, is much
longer than the electron cooling time Atgpot, 1.¢., In the
fast cooling case [ = Atgyn/Atcoor > 1. In this case we
will find that the formula is given by
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taking the shock structure into account. Here v is the
Lorentz factor of the shock in the shocked fluid frame.
The correction factor In{f/v) in equation (4) may be
order of unity. For example, let-us. consider the inter-
nal shocks of the GRBs (e.g., Piran 1999). The photon
energy density may be estimated as Uy ~ L/4wr?cl™® ~
1010 Lgor 2Ty ergem™ where L = 10%2 155 ergs—1 is the
observed luminosity, r = 1013r15 cm is the distance from
the center at which the internal shocks take place, and

I' = 1021, is the Lorentz factor of the shell. Then the

cooling time is given by At oot ~ 3yemec?/(doTcysUp) ~

S 88 —



FIG. 1: Our simple model is shown. A uniform shell has a
thickness D and is optically thin. A shock is propagating with
a velocity ¢f8 = ¢(1 — v7?)2 measured in the shocked fluid
frame. Electrons are accelerated right behind the shock, and

after that they cool radiating synchrotron and Compton emis-
sion. The motion of the electrons is neglected in the shocked

luid frame.

IO_GY')E E{nglrfgI‘% s, where 7, = 10y, 3 is the Lorentz
factor of the electrons. On the other hand, the shell cross-
Ing time in the fluid frame may be given by Atg,, ~

I'd/c ~ 1I'adg s, where d = 10%°dg cm is the shell thick-

ness in the lab frame. Thus the correction factor is about
In(f/v) ~ M(Atgyn/Atcoor) ~ In10% ~ 14, where we as-
sume v ~ 1. Note that the electron acceleration time
&tacc ~ ’}’gmgﬂz/ﬂﬁB ~ 10“8’7’313},1/21:521/2?"131-‘2 S 1S
much shorter than two other timescales Atyy, and At yor-

II. SIMPLE MODEL

Let us consider the following stimple model. The exten-
ston to more complicated models is straightforward. We
consider an uniform shell with a thickness D and a shock
propagating with a velocity ¢f = ¢(1 —vy72)1/2 measured
In the shocked fluid frame (see Figure 1). We assume that
electrons are accelerated just behind the shock and that
the motion of the electrons is negligible in the shocked
fluid frame, since the electron acceleration time At,.. is
typically much shorter than other timescales.

The energy density of soft photons at a point r = R is
given by the integration of all synchrotron radiation from
the accelerated electrons as

S

Uy (t,r = R) = 2" / duds 7P (1= 2,7), (5)
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where P n(t,7) erg s~ lem™ is the synchrotron power
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F1G. 2: The region to be integrated in equation (5) is shaded
in the (s, pt) plane for 0 < £ = t—R/cB < Atcoor and eAtecoor <
R 5 D. Four constraints for the integral are shown by solid
lines, (i) —R/p = s, (ii) (D — R)/p = s, (iii) (¢Bt — R)/(p +
B) = s and (iv) [¢B(t — Atcoot) — R] /(12 + B) = 5. The lines (i)
and (ili} cross at g = —R/ct, and the lines (i) and (iv) cross

at p = —R/c(t — Atcoot ).

at a time ¢ and a position r, and p = cos@. Note that
the retarded time ¢ — s/c is used in equation (5). To
be precise, we have to solve the electron cooling together
with equation (5). However, to extract the essence, we
adopt here the following sitnple functional form as the

synchrotron power,

r 7
Psyn(t,7) = Asyn [H (t N E—) —H (t c3

which means that electrons radiate with a constant power
Asyn €Ig s—1 em™3 for a duration At,,, s. This is suffi-
cient for the following argument.

To compare the energy density U,(Z,r) with the one-
zone estimate U3°™, we have to take the time and
position averaging (U, (¢,7)). The one-zone approxima-
tion of equation (1) is equivalent to setting (U, (¢, 7)) =
| dtdr Ps,,(t,7)/D, which is not satisfied in general.
With equation (6), the photon energy density of one-zone
approximation is given by
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Equation (6) makes it possible to integrate equation
(5) analytically. In Figure 2, the region to be integrated
is shaded. There are four constraints for the integral
in equation (5), which are shown by four solid lines in
Figure 2. (i) —RB/p > s so that the shell has an end
r= R+ s> 0. (ii) (D — R)/p > s so that the shell has
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antend r = R+4-sp < D. (iii) (¢ft— R)/(pe-+-B) > s for the
first Ieaviside step function in equation (6) to be unity
at the retarded time ¢ —s/¢, ie., L — s/c— (K + sp)/eB >
0. (iv) [¢B(t — Ateoot) — R]/(po+ B) > s for the second
step function in equation (6) to be zero at the retarded
time 1 — s/c, i.e., t — Ategor — s/c — (I + sp)/cB < 0.
When electrons radiate, 0 <t =1 — R/c¢ff < Algoor, fast,
cAteoot € RS D (moore precisely ¢B8Atcoor < (1 — B)E
and cfBAtcor < (1 + BYD — R)), the shaded region in
Figure 2 can be integrated as

U,(t, R)
Ay f‘R/ Hrteent) | (Pl = Dleoot) — R
2¢ {J 1 p+p |

R et R ! Bt — R
+ / ds (mw) +/ dus P
~ R/ c(t~Atcoor) I ~Rfct HTP

_ Aﬂy'ﬂ- . - (1 — )8) [R + Cﬁ(f — Atmu!)]
T 9 J[J'(Atﬂﬂﬂ.’, _ t) In (3182 (Atcgﬂz . f)
; . R4 cBE)
R R+ cpt iﬁ“n(lJrﬁ)( + cfi) |
c R+ cp(t - Atcool ) cf3*1 |
BAsyn . (1—-PB)R
o Atooor — -
2 l:( ! ) " Cﬁz(Atﬂﬂﬂf. — t)
4+ Ateoor + T 1In (L1 AR , (8)

cf3*t

where we use cAi.or << R in the last equality. Af-
ter taking the time and position average, (U,(f,r)) =

) Blooot gf fUD drUy(t, )/ At oot ), We have

0
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where f = D/cBAL.,0; is the ratio of the shock crossing
time to the electron cooling time. Therefore, in the fast
cooling case, In{f/y) > 1, the one-zone approximation
in equation (7) underestimates the ambient soft photons
by a factor of ~ In(f/v), i.e.,

Uyit,r)) ~ U cn(f/y),  (10)

for B ~ 1. The logarithmic term originates from the inte-
gral of the term 1/u. This is similar to the well known fact
that the infinite planar problem of the radiative transfer

has an logarithmic divergence.

III. ULTRA FAST COOLING

Increasing the ambient soft photons enhances the 1n-
verse Compton emission. From equation (10}, in the fast
cooling case In{f/v4) > 1, the ambient photon energy
density is more than that from the one-zone argument
by a factor of ~ In(f/v), so that equation (1) should be
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FIG. 3: The region from which the photons come to the
square point is shade (see also Figure 1). This causal region
is bounded by four constraints as in Figure 2, (i) —R/u = s,
(i) (D — R)/p = s, (iii) (cBt — R)/{pt + B} == s, and (iv)
[cB(t — Atcoot) — R] /(3 +B) = s. The boundaries (iii) and (iv)
represent the hyperboloid of two sheets. The boundary (iv)
is not relevant to this figure. Approximately, photons come
from the direction tan(am — 8) = B~ 'y~!, which is shown by
the dashed line.

modified as

Uy Usyn In{f/~) __ Ce In(f/v) (11)

Y =077 U; p(14Y)

The solution of the above equation is

~1+ /14 de.In(f/7)/ep (12)
. ,

so that we have equation (4).

To make the physical situation clear, the region from
which the photons come is shade 1n Figure 3. This causal
region is bounded by four constraints as in Figure 2, (i)
Rfp=s, (ii) (D~ R)/p = s, (iii) (cBt — R)/(u+B) = s
and (iv) [cB(t — Atcoot) — R]/ (12 + B) = 5. The boundary
(iii) represents the hyperboloid of two sheets,

Y =

(r — R—~%*cft)*

x? 4 1
~Ac2 B2 = -1 (13)
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where 22 + y? = s2(1 — p*). The boundary (iv) is also
described by equation (13) with replacing t by £ — At ou1-
From equation (13) we can find that the photons approx-
imately comes from the direction tan(m — 0) ~ 7 — 0 ~
#~ty~1 This is physically reasonable since the shock
front has the same velocity as the photons traveling in
the direction tan(m — ) = g~ 1y~1.



The approximation of the infinite width of the shell
is broken when the extent of the shell is smaller than
~ B !9 1D, In the internal shocks of the GRBs, for
cxample, this plane approximation is good since the dis-
tance from the center at which the internal shocks take
place 7 = 103714 cm is much larger than ~ g1y~ 1D ~
I'd ~ 101 dg cm. |

IV. SUMMARY AND DISCUSSIONS

We have investigated the synchrotron self-Compton
process taking the one dimensional shock structure into
account. We have found that in the fast cooling case
onec-zone approximation underestimates the energy den-
sity of the seed photons by a factor of ~ In{(f/7), where
I = Atgyn/Atconr is the ratio of the shock crossing time
to the electron cooling time and v is the Lorentz factor
of the shock in the shocked fluid frame. This enhances
the inverse Compton cooling (fast cooling becomes “ul-
tra” fast cooling) so that the Compton parameter Y in
equation (3) is larger than that of one-zone estimate in
equation (4).

We have discussed the ultra fast cooling using the in-
ternal shocks of the GRBs as an example. This mech-
anism may be also important for (early) afterglows of
the GRBs (e.g., Sari, Narayan & Piran 1996; Waxman
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objects. Tor example, the plane-parallel approximation
may not be good, we may have to take both forward and
reverse shocks into account and so on. If the synchrotron
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Also we have not dealt with the details of the spec-
trum. Ultra fast cooling may modifies the electron dis-
tribution conventionally used in one-zone approximation.
We will be able to answer this question by solving one
dimensional radiative transfer. This is also an interesting

future problem.
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