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Abstract. —

It may be possible to construct a laser interferometer
gravitational wave antenna in space with hrms ~ 1027
at f ~ 0.1Hz in this century. We show possible specifica-
tion of this antenna which we call DECIGO. Using this
antenna we show that 1) typically 10° (104 ~ 10%) chirp
signals of coalescing binary neutron stars per year may
be detected with S/N ~ 10*. 2) We can directly measure
the acceleration of the universe by ten years observation
of binary neutron stars. 3) The stochastic gravitational
waves of Qgw = 10720 predicted by the inflation may
be detected by correlation analysis for which effects of
the recent cosmic acceleration would become highly im-
portant. Our formula for phase shift due to accelerating
motion might be akso applied for binary sources of LISA.
This proceeding is based on Ref. [1].

Specification of DECIGO.—

The sensitivity of a space antenna with an arm length
of 1/10 of LISA [2] and yet the same assumption of
the technology level, such as a laser power of 1 W, the
optics of 30 cm, etc. will be 4 X 10~2'Hz"Y/? around
0.1 Hz in terms of strain, a factor of 10 better than
the planned LISA sensitivity around 0.1 Hz (see also
http://www.physics.montana.edu/maggie for a project
named MAGGIE around this band). The sensitivity
could be improved by a factor of 1000 for the next gen-
eration of a space antenna with more sophisticated tech-
nologies such as implementation of higher-power lasers
and larger optics in order to increase the effective laser
power available on the detectors, and thus to reduce the
shot noise. The ultimate sensitivity of a space antenna
in the far future could be, however, 3 x 10~*7 around 0.1
Hz in terms of strain, assuming the quantum limit sen-
sitivity for a 100 kg mass and an arm length of 1/10 of
LISA. We name this detector DECIGO. This requires an
enormous amount of effective laser power, and also re-
quires that the other noise sources, such as gravity gra-
dient noise, thermal noise, practical noise, etc. should
be all suppressed below the quantum noise. Here we as-
sume that such an antenna may be available by the end
of this century, although we note that within the next
five years or so NASA will begin serious discussions of a
follow-on to the planned NASA/ESA LISA mission, so
DECIGO technology may be achieved sooner. Note here
that when the pioneering efforts to detect the gravita-
tional waves started in the last century using resonant
type detectors as well as laser interferometers, few peo-
ple expected the present achiecvement in resonant type

detectors such as IGEC(bar) [3] and in laser inteferome-
ters such as TAMA300 [4], LIGO, GEO600, and VIRGO
(for these detectors see [5]). Therefore all the experimen-
talists and the theorists on gravitational waves should not
be restricted to the present levels of the detectors. QOur
point of view in this Letter is believing the proverb ©
Necessity is the mother of the invention” so that we ar-
gue why a detector like DECIGO is necessary to measure
some important parameters in cosmology.

The sensitivity of DECIGO, which is optimized at 0.1
Hz, is assumed to be limited only by radiation pressure
noise below 0.1 Hz and shot noise above 0.1 Hz. The
contributions of the two noise sources are equal to each
other at 0.1Hz, giving the quantum limit sensitivity at
this frequency. The radiation pressure noise has a fire-
quency dependence of o< f~* (in units of Hz"1/2) be-
cause of the inertia of the mass, while the shot noise has
a dependence of approximately oc f ! (in units of Hz Y/ )
because of the signal canceling effect due to the long arm
length. In figure 1 we show sensitivity of various detec-
tors and characteristic amplitude h. for a chirping NS-NS

binary at z = 1.
Direct Measurement of the

Universe.—
Recent distance measurements for high-redshift su-

pernovae suggest that the expansion of our universe 1is
accelerating [6] which means that the equation of the
state of the universe is dominated by “dark energy” with
0+ 3p < 0. SuperNova / Acceleration Probe (SNAP,
http://Ibl.gov) project will observe ~ 2000 Type la su-
pernovae per year up to the redshift z ~ 1.7 so that we
may get the accurate luminosity distance dp(z) in near
future. Gravitational wave would be also a powertul tool
to determine dy(z) {7}.

From accurate dr(z) one may think that it is possible
to determine the energy density p(z) and the pressure
p(z) as functions of the redshift. However as shown by
Weinberg [8] and Nakamura & Chiba [9], p(z) and p(z)
can not be determined uniquely from dy(z) but they de-
pend on one free parameter o (the spatial curvature).

Recent measurement of the first peak of the antsotropy
of CMB is consistent with a flat universe ({lxo = 0) for
primordially scale-invariant spectrum predicted by slow-
rol] inflation [10] under the assumption of A cosmology.
However it is important to determine the curvature of
the universe irrespective of the theoretical assumption
on the equation of the state and the primordial spectra
also. In other words an independent determination of
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{10 1s indispensable since Qi is by far the important
parameter. As discussed in [9], the direct measurement, of
the cosmic acceleration [11] can be used for this purpose.
Here we point out that the gravitational waves from the
coalescing binary neutron stars at z ~ 1 observed by
DECIGO may be used to determine 2.4. Even in the
worst case the redundancy is important to confirm such
an important finding as the dark energy.

Cosmic Aceeleration. —

A Cosmic Acceleration.— We consider the propagation
of gravitational wave in our isotropic and homogeneous
universe. The metric is given by ds? = —dt*+a(t)*(dz*+
r(x)?(d0* + sin” 0d¢?)), where a(t) is the scale factor and
a(t)r(x) represents the angular distance. The relation
between the observed time of the gravitational waves ¢,
at x = 0 and the emitted time {, at the fixed comoving
coordinate z is given by j:" E% = x == const. Then we

L

have di,/dt. = a,/a. = (1 + z)} and

d*t,
di2

= (14 2)a; ' (da(to) — Bra(te)) = geos(2)
(1 + 2)({(1+ 2)Hy — H(z)), (1)

where H(z) is the Hubble parameter at the redshift
z and Hp is the present Hubble parameter. For an
emitter at the cosmological distance z 2 1 we have
Geos(2) ~ O(ty ) where t, is the age of universe g ~
3 x 107 scc. From above equations we have Af, —=
At {1+ 2} + y““;(z)ﬁhtg + ---, where At, and At. are
the arrival time at the observer and the time at the
emitter, respectively. When we observe the gravitational
waves from the cosmological distance, we have At, =
AT + X {(2)AT? + ---, with X(2) = gcos(2)/2(1 + 2)2,
where AT = (1 + 2)At,. is the arrival time neglecting
the cosmic acceleration/deceleration (the second term).
Now for AT ~ 107 sec, the time lag of the arrival time
due to the cosmic acceleration/deceleration amounts to
the order of second ~ 10'%/(3 x 10') ~ 1 [sec]. From
Eq. (1), if X(z) is positive, then 8;a(t,) > 6;a(t.). This
clearly means that our universe is accelerating. There-
fore the value of this time lag is the direct evidence for
the acceleration/deceleration of the universe.

As shown in [9], if the accurate value of X(z) at
a single point z; is available it is possible to deter-
mine g as Qe = {1 — (dr(z;)/d2)*(1 + z5)*{Hp —
2X(2:))°Hr(zs)*HE} !, where we have assumed that
the quantity r(z) = dp(2)/(1 + 2) is obtained accurately,
e.g., by SNAP. Even if the accurate values of X (2) are
not available for any points, we may apply the maximal
likelihood method to determine Q. Using the value of
(210 thus determined, we can obtain the equation of state
of our universe without any theoretical assumption on its

matter content [9].

B Fvolution of Phase of Gravitational Waves from Coa-
lescing Binary at Cosmological Distance.—

Liet us study an inspiraling compact binary system that
evolves secularly by radiating gravitational wave [12].
For simplicity we study a circular orbit and evaluate the
gravitational wave amplitude and the energy loss rate
by Newtonian quadrupole formula. We basically follow
analysis of Cutler & Flanagan [12] but properly take into
account of effects of accelerating motion. The Fourier
transform h(f) = [~ e*™/'h(t)dt for the wave h(t) is
evaluated using the stationary phase approximation as
hf) = KdL(z)“le”ﬁf“T/G exp[¢®(f)], where K is de-
termined by the angular position and the orientation of
the binary relative to the detector, and M, is the chirp
mass of the system. Keeping the first order term of the
coeflicient X (z), the phase ®(f) of the gravitational wave

becomes

3
(I}(f) ~ 2wftc - (ﬁ'c "” ;I’" + Z(SWMczf)%ﬁ/B
25
X --13/3M~—10‘/3 —13/3

where ¢, and ¢, are integral constants and M., = M (1+
z} is the redshifted chirp mass.
If we include the post-Newtonian (PN) effects up to

P!-*N-order, the
term 3/4(87 M., f)~%/? in eq.(2) should be modified as

$(8w M., f)—°/3 [l +'%{-}~ (%g + -5;4“—:) x + (408 — 167)23/2 . ..

where © = (n My f(1 + 2))?/? = O(w?/c?) is the PN ex-
pansion parameter with M; being the total mass of the
binaries. The term proportional to 8 in PN order
(< 23/%) is caused by the spin effect [12,13]. In gen-
eral PN contribution depends on the frequency f as
O(f(=5+2N)/3) and is largely different from the depen-
dence f~13/% caused by the cosmic acceleration. This
difference is very preferable for the actual signal analy-
SIS.

C the estimation error.—

For the circular orbit of the binary neutron stars (NSs)
of mass M, and M, with the separation a at the redshift
z, the frequency of the gravitational waves f is given
by f = 0.1Hz(1 + 2) 1 (M; /2.8 M5)'/?*(a/15500km)~3/2
The coalescing time 1., the number of cycles N, . and
the characteristic amplitude of the waves k. are given by

te = T(1 + 2)(M1/14Mp) ™ (M2 /1.4Mg) !

x (M;/2.8M3) ™ (a/15500km)*yr (3)
Neyete = 1.66 x 107(M; /1.4Mg) " (M, /1.4 M)
x(M¢/2.8Mp) ™ *(a/15500km)?/? (4)
he = 1.45 x 1077 (1 + 2)"/° (M. /1.2M)*/°
X(f/0.1Hz) " (dy /10Gpe)™H . (5)

Let us evaluate how accurately we can fit the
parameter X(z). We take six parameters \; =

(A, M., iz, tes de: M'*® X (2)} in the matched filter-
ing analysis up to IP’PN-order for the phase ®(f) and

iy~

— phH —



Newtonian order for the amplitude [12]. Here A is
5/6

the amplitude of signal Kdp(z)~'Mc’° in the previ-
ous subsection and p, is the redshifted reduced mass
1, = (14 2)MyMa/M,;. As the chirp mass M., can be
determined quite accurately, we simply put AX(z) =
A {M;10/3X(z)} /M;m/:;n For simplicity we fix the
redshift of sources at 2 = 1 and calculate S/N and the er-
ror AX for equal mass binaries with various integration
time At before coalescence. We use the effective factor
1/+/5 for reduction of antenna sensitivity due to 1ts ro-
tation [2]. For the present analysis we neglect the binary
confusion noise since double White Dwarf binaries do not
exist at frequency f 2 0.1Hz [14].

We found that we can detect NS-NS binaries at z =1
with S/N ~ 20000 and AX/t5' ~ 7.0 x 107 for inte-
eration time At = 16yr (Neyae ~ 107 orbital cycles),
and S/N ~ 10000 and AX/t;"' ~ 1.26 for At = Iyr
(see Fig.2]). With this detector it would be possible to
determine X (z) and obtain the information of the cos-
mic acceleration quite accurately. With AT = 16yr we
have the estimation error for the redshifted masses as
AM., /M. = 1.5 % 1071 Ap,/p, = 4.2 X 10~% and
for the wave amplitude AA/A ~ (S/N)™! = 5 x 107°.
Although the more detailed study is needed to estimate
the error of the binary inclination angle, it is expected
that the luminosity distance dr, can be determined accu-
rately so that the redshift z can be determined using the
inverse function z = dj ' (distance) of the accurate lumi-
nosity distance from e.g. SNAP. As a result we can know
two (not redshifted) masses M, and M, for ~ 10° bina-
ries per year up to z = 1 {15]. This will be large cnough
to establish the mass function of NS which would bring
us important implications for the equation of the state of
the high density matter and the explosion mechanisms of

Typell supernovae.

As the S/N and the estimation error scale as S/N
h-! and AX « h.ys, we can attain AX/ty 1 ~ 7.0
for the integration time T' = 16yr using a less sensitive
detector with Rym,s ~ 10724 (1000 times worse). Even
though the error bar AX is fairly large for this detector,
the likelihood analysis would be an efficient approach to
study the cosmic acceleration. Considering the estimated
cosmological coalescence rate of NS-NS binaries (2 2 X
(10Gpc/350Mpc)® ~ 10°yr~1) [15]), we may expect the
decrease of the estimation error AX roughly by a factor

of ~ 1/300 = 1/+/105.

D Acceleration in the Very Early Universe.—

In the inflationary phase there was an extremely rapid
acceleration of the universe. In this phase the gravi-
tational waves were generated by quantum fluctuation
[16]. With CMB quadrupole anisotropies measured by
COBE, the slow-roll inflation model predicts a constramnt
on the stochastic background Qew S 1071 - 101 at
f ~ 0.1Hz [17]. Ungarelli and Vecchio [18] discussed that
the strain sensitivity hyms ~ 107%4 is the required level at

f ~ 0.1Hz for detecting Qaw ~ 107'? by correlating two
detectors for decades (see also Ref. [19]). It is important
to note that the band f > 0.1 Hz is free from stochastic
backgrounds generated by White Dwarf binaries. The ra-
diation from neutron stars binaries is present in this band
and it is indispensable to remove their contributions ac-
curately from data stream, where effects of the cosmic
acceleration would be highly important. ‘T'hus measure-
ment, of the present-day cosmic acceleration 1s closely re-
lated to detection of the primordial gravitational wave
background that is one of the most interesting targets
in cosmology. If DECIGO with hrms ~ 2 X 10727 at
f ~ 0.1Hz is available we can detect the primordial grav-
itational waves background even i the energy density is
extremely low lgw ~ 10—2Y by corrclating two detectors

for a decade.
Confusion noise due to NS-NS (or NS-BH, BH-BH)

binaries might be important in the band f ~ 0.1Hz.
Ungarelli and Vecchio [18] investigated the critical fre-
quency f, where we can, in principle, remove signal from

“individual NS-NS binaries by matched filtering analysis

and the observed window becomes transparent to the pri-
mordial stochastic background. They roughly estimated
fq ~ 0.1Hz where the number of binaries per frequency
bin (~ 1078Hz) is less than one. But binaries around
f ~ f4 ~ 0.1 chirp significantly within observing time
scale and the situation would be more complicated than
monochromatic sources [14]. Although more detailed
analysis is needed, a much smaller N5-NS coalescence
rate than ~ 10°yr~! might be required for our analysis

to be valid.

Discussions.— |
The determination of the angular position of the source

is crucial for matching the phase [2]. The phase modula-
tion at the orbital radius 1AU corresponds to 2AU/c ~
1000{sec]. Thus, in order to match the phase within the
accuracy of 0.1fsec] we need to determine the angular
position with precision ~ 0.1/1000 {rad] ~ 20". In the
matched filtering analysis we can simultaneously hit pa-
rameters of the angular position as well as the relative
acceleration between the source and the barycenter of
the solar system. Due to their correlation in the Fisher
matrix, the measured acceleration would be somewhat
degraded if we cannot determine the angular position
by other observational methods. Using the gravitational
wave alone, we can, in advance, specify the coalescence
time and the angular position of the source within some
error box. If coalescence of NS-NS binaries would release
the optical signal (e.g. Gamma Ray Bursts as proposed
by [20]) we may measure the angular position accurately
by pointing telescopes toward the error box at the ex-
pected coalescence time from the chirp signal. “There-
fore we have not tried to fit the angular position of the
source in the matched filtering method {2]. We might
also determine the redshift of the source by using optical
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information of host galaxies.

Let us discuss the effects of the local motion gppeq; of
the emitteron the second derivative d?t,/dt?. As the ef-
tect of bulk motion of galaxy is much smaller than cos-
mological effect, we estimate the internal acceleration
within the galaxy based on the observational result of
NS-NS binary PSR 1913416. As shown in Table 1 of
[7], the dominant contribution of its acceleration # comes
from the global Galactic potential ficld and has time scale
¢/ ~ 10to(R, /10kpc) (Vo /200kms 1) that can be com-
parable to the cosmic signal g.,, where R, is the effective
radius of the acceleration and V,,, is galactic rotation
velocity. However the contamination of local effect gocar
can be reduced by taking the statistical average of many
binaries as (9cos + Giocal) = (geos). -We also note that the
cosmological change in phase of a coalescing binary [given
by the last term in Eq. (3)] may have other applications,
and may under certain circumstances be observable by
the planned LISA mission.
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FIG. 1. Sensitivity (effectively S/N=1) for various detec-
tors (LISA, DECIGO, LIGOII and a detector 10® times less
sensitive than DECIGO) in the form of Ry, (solid lines).
The dashed line represents evolution of the characteristic am-
plitude h. for NS-NS binary at z = 1 (filled triangles; wave
frequencies at 1yr and 10 yr before coalescence). The dotted
lines represent the required sensitivity for detecting stochas-
tic background with Qew = 107 and Qew = 1072° by ten
years correlation analysis (S/N=1).
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FIG. 2. S/N and the estimation error AX for NS-NS
(1.4Mg) or BH-BH (10Mg) binaries at 2 = 1. We evaluate
them for DECIGO (sensitivity: hrms ~ 10727 at f ~ 0.1Hz).



