電離領域膨張による誘発的星・分子雲形成

細川隆史(NAOJ)犬塚修一郎(京大理)

2006.12.27 理論懇@立教大学

Radiative Feedback -分子雲中-

電離(HI HII)光子

(hv > 13.6eV)

解離(H₂ HI)光子

(11.0eV < hv < 13.6eV)

星形成に対するFeedback

Negative Feedback 分子雲を破壊して抑制 (H2 HI HII) V.S

Positive Feedback 衝撃波による分子ガス圧縮 誘発 (compression of H2)

Radiative Feedback -希薄中性ガス中-

283.00 33pc 、 Karr & Martin (2003)

Motivation

分子雲中 : 分子ガスの電離・解離 v.s. 衝撃波での誘発的星形成 中性ガス中: 中性ガスの電離 v.s. 衝撃波での誘発的分子生成 どのような場合にどちらの効果が効くか? Positive feedbackの効率は? Approach: 1D 球対称 輻射流体計算

分子雲中の膨張

• study the physical/chemical structure of the shell

• Does molecular gas accumulates in the shell shielding FUV photons?

Dynamical Evolution

Mass Evolution

Chemical Evolution of Shell

シェルの柱密度
 ダスト減光によるFUV光の遮蔽
 大半のガスがシェル上に分子ガスとして溜まる。
 重力不安定による分裂
 Positive Feedback

希薄中性ガス中の膨張

- Study the physical/chemical structure of the shell
- Does molecular gas form from ambient neutral medium?

Dynamical Evolution

球対称 HII領域膨張の数値計算 中心星:41M_{sun}、媒質:cold HI (n=10/cc, T~100K)の場合

電離領域周囲に高密度shellができる。密度:n~1000/cc Shell内部はその周囲より低温。温度:T~30K

Accumulation of Molecules

Hunt of Predicted Gas Phase

Hunt the cold (T~a few × 10 K) HI

中性水素 21cm 輝線

HI Self-Absorption (HISA):高温中性ガス (warm) からの21cm線輝線 に対する、低温中性ガスの吸収。

Canadian Galactic Plane Survey CGPS ; Taylor et al. (2003)

- ・電波・赤外 での銀河面サーベイ
- •角分解能:約1分
- HI, HII, CO, dust分布が揃う。

Channel Map 青image:21cm emission, 赤contour:CO

CGPS data in W5 HII region

電離ガスを取り囲むようにdust shellが存在。 周囲にCO分子。Dust shellとの相関は必ずしも良くない。

CGPS data in W5 HII region

HI 21cm emission @ v_{LSR} =-39.8 km/s : T_b=45K (bright) 110K (dark)

電離ガスを取り囲むようにshell状にHI自己吸収がある。 Dust shellとの相関あり。CO分子とは必ずしも相関しない。

大質量星起源のUV/FUV光による誘発的星・分子雲形成過程 を調べた。

(I) 分子雲中

- ・電離領域の圧力超過により高密度・低温シェルが出来る。
- ・シェル中の化学構造: atomic shell → molecular shell 観測と合致
 シェルの柱密度
 ダスト減光によるFUV光の遮蔽
- ・分子ガスdominant後、分裂; positive feedback

(II) 希薄中性ガス中

- ・同様に高密度・低温シェルが出来る。
- ・シェル中の化学構造: HI H2 OK, 但し、CO分子なし。 分子雲と中性ガスの中間的なガス相 Dark HI / H₂ cloud
- ・観測データ中にも実際にそのようなガス相の兆候が見られる。

Extra Viewgraphs

Heating / Cooling Processes

	region	process	reference	note
Heating	HII <	H photoionization	Spitzer (78) etc.	
	PDR	Photoelectron	Bakes & Tielens (94)	
		H_2 photodissociation	HM79 (Hollenbach & McKee '79)	
		H_2 reformation	HM79	
		Cosmic-ray	Shull & Van Steenberg (85)	
Cooling	HII	H recombination	Spitzer (78) etc.	
		Lyman- α	Spitzer (78)	
		OI $(63.0 \mu m)$	HM89 (Hollenbach & McKee '89)	
		OII $(37.29 \mu \text{m})$	HM89	
		CII $(23.26\mu m)$	HM89	
		Collisional ionization	Tenorio-Tagle et al. (86)	
	PDR	OI (63.1 μm)	HM89	†1
		CII (157.7 μ m)	HM89	
		H_2 rot/vib excitation	HM79, Galli & Palla (98)	
		CO rot/vib excitation	HM79	
		Dust recombination	Bakes & Tielens (94)	
		Collisional dust-gas heat transfer	HM89	† 2

†1: backgroundがsource func.を上回った場合、heatingとして効く。 †2: dust温度がgas温度を上回った場合、heatingとして効く。

Why only H₂ Molecules?

水素分子のみが選択的に生成される原因

Why small column density ?

媒質密度を変えたときの定性的な変化。

Hosokawa & Inutsuka (2006), ApJ, 646, 240

大きさ:
$$R_{\rm st} \propto n^{-2/3}$$

時間: $t_{\rm dyn} = R_{\rm st}/c_{\rm HII} \propto n^{-2/3}$

シェル質量:
$$M_{\rm sh} \propto n R_{\rm st}^3 \propto n^{-1}$$

$$\left\{ egin{array}{l} m{
u}$$
ェル柱密度: $\sigma_{
m sh} \propto n R_{
m st} \propto n^{1/3} \ m{
u}$ シェルに入射するFUV flux: $F_{
m FUV,i} \propto S_{
m FUV}/R_{
m st}^2 \propto n^{4/3} \end{array}
ight\}$

密度小

sh, F_{FUV,I}は同じt/t_{dyn}での比較 M_{sh},

Density dependence

CGPS data in W4 HII region

Image : 60 μ m dust emission Contour : ¹²CO(1-0) @ v_{LSR}=-39.8 km/s

電離ガスを取り囲むようにdust shellが存在。 連続的では無いが、CO分子もdust shellに沿って分布している。

CGPS data in W4 HII region

電離ガスを取り囲むようにshell状にHI自己吸収がある。 Dust shellとよく重なる。