「すざく」衛星の成果

立教大学理学部

 X線天文衛星「すざく」 ■ 拡散X線に強い「すざく」 ■ 硬X線に強い「すざく」 ■ 宇宙高温ガスに迫る ■ 地球周辺からWHIMまで コンパクト星の中心に迫る ■ ブラックホールと中性子星 宇宙の粒子加速領域に迫る - まとめ

2005年7月10日 ISAS/JAXA-NASA

XIS
4台のCCDカメラ
FI 3台
BI 1台

大面積
高エネルギー分解能
低バックグラウンド

XIS:低エネルギーで高いエネルギー 分解能

XIS:低バックグラウンド

H X D

広帯域
 PIN 12-70 keV
 GSO 50-600 keV
 低バックグラウンド
 小さいFOV(0.5x0.5)

HXD:低バックグラウンド

■ 10keV以下

拡散成分には最高の感
 度とエネルギー分解能

宇宙高温ガスに迫る

宇宙高温ガスに迫る ■地球周辺からWHIMまで

Line Diagnostics
放射機構に迫る
元素組成比を求める(ガスの起源に迫る)
Thermal/non-thermal?

Solar Wind Charge-Exchange X-ray Emission (Fujimoto et al. 2006 PASJ) mysterious Soft X-ray Emission by ROSAT LTEs (Long Term Enhancement) ■ Snowden et al. (1994) Soft X-ray Emission from Comets by ROSAT

Massive Star Clusters

Massive Stars: \blacksquare SNRs Violent Stellar Wind Shock/collisions Arches Cluster **Carina** Nebulae **M**17

Carinae (Hamaguchi et al. 2006 PASJ)

Fig. 1.— Left: XMM-Newton EPIC MOS image color-coded to represent the soft band (0.2– 0.6 keV) to red, medium band (0.6–1.2 keV) to green and hard band (1.2–10 keV) to blue. The bar-dot lines show the XIS FOV in the 2005 Aug. 29 observation. Right: Suzaku XIS1 image of the 2005 Aug 29 observation. The solid white lines show event extraction regions, and the solid green lines show the Chandra FOV in the 1999 September observation. Both images are drawn with logarithmic scale. The vignetting effect is not corrected.

0.2 keV, 0.6keV & 5 keV Thermal -> Abundance Study

N/O<0.4 I : not the wind from early type stars but from multiple SNRs?

Carinae

(Sekiguchi et al. Preliminary/Hamaguchi et al. 2006, PASJ)

大質量星近傍では Nの過剰

Arches Cluster ;Tsujimoto et al. 2006 PASJ

Thermal Emission + 6.4 keV line + Hard Reflection & Scattering

M17

Diffuse Soft Component (Hyodo et al. Preliminary)

 $\label{eq:tau} \begin{array}{l} kT{\sim}0.25 \ keV \\ Abundance; \ 0.1{\sim}0.3 \\ N_{\rm H}{\sim}4x10^{21} \end{array}$

Galactic Center

Iron Line Spectroscopy

<~5eVの精度でエネルギーを決定
 He-like Fe Ka=6679(+1.3,-0.9) eV
 Collisional Excitation(6685eV)

 (cf. Electron Capture (6666eV)ではない)

Koyama & the GC team, 2006

Energy (keV)

Line Mapping で反射星雲、SNR?

Galaxies/Clusters (Fronax Cluster ·NGC 1404)

Abundance Determination

Matsushita et al. 2006 PASJ

- Si & Fe \sim solar ; O/Fe \sim 1/2; O, Ne, Mg \sim stellar metallicity
- SNIa must contribute Si, possibly with enhanced Si/ Fe ratio (cf M87, Mitsushita et al., 2003)

Fornax Cluster (Matsushita et al. 2006, PASJ)

元素分布を精密決定

Fig. 1. The 0.3-4.0 keV Suzaku XIS image of the Fornax cluster. Data from the BI and FI detectors were combined

WHIMの観測 Takei et al. 2006 PASJ

- A2218(z=0.1756)の周辺のwarm-hot intergalactic mediumの探索
 - missing baryons
 10^{5~7}K

■ 赤方偏移した高電離酸 素(OVII, OVIII)の探索

WHIMの観測

BG(offset region)の観測
Local Hot Babble (LHB)
Milky Way halo (MWH)
CXB

WHIMの観測

A2218(z=0.1756)の周辺(3'-8' region)
 BG+ HotGas (Intra Cluster Gas ~6keV)
 この中でOVII, OVIII line (z=0.1756) (WHIMからの放射) 探索 (488.22, 555.99 eV)

WHIMの観測

■ 上限値

$$n_{H} < 7.8 \times 10^{-5} \, cm^{-3} \left(\frac{Z}{0.1 Z_{\odot}}\right)^{-1/2} \left(\frac{L}{2 M p c}\right)^{-1/2} \\ \delta = \frac{n_{H}}{\overline{n}_{H}} < 270 \left(\frac{Z}{0.1 Z_{\odot}}\right)^{-1/2} \left(\frac{L}{2 M p c}\right)^{-1/2}$$

where $\bar{n}_{\rm H} = X \Omega_{\rm b} \rho_{\rm crit} (1+z)^3 / m_{\rm p} = 1.77 \times 10^{-7} (1+z)^3 \,{\rm cm}^{-3}$ is the mean hydrogen density in the universe, in which X = 0.71 is the hydrogen-to-baryon mass ratio, $\Omega_{\rm b} = 0.0457$ is the baryon density of the universe, $\rho_{\rm crit} = 9.21 \times 10^{-30} \,{\rm g} \,{\rm cm}^{-3}$ is the critical density of the universe, and $m_{\rm p}$ is the proton mass. Even though this level of overdensity is much higher

コンパクト星の中心に迫る

1.中性子星の磁場
サイクロトロン吸収構造
2.降着円盤に診断(特に low/hard state)
コロナの温度
円盤の構造

中性子星の磁場

▲ 低高度でエネルギー高:表面磁場を反映 ▲ ある光度でTransition?

Terada et al. 2006, ApJ: cf, Nakajima et al. 2006

ブラックホール候補星のステート

High/Soft State

主成分;標準円盤 コンプトン散乱された成分? up to MeV?

Poutanen & Coppi 1998

ブラックホール候補星のステート Low/hard State

反射成分

Compton Reflection Component

$$R = \frac{\Omega}{2\pi}$$

THREE EXPLANATIONS

- The reflector is disrupted near the black hole. (Shapiro et al. 1976)
- The reflector is highly ionized (Ross et al. 1999; Nayakshin et al. 1999)
- Non-static corona (Beloborodov 1999)

GRO J1655-40 (Takahashi et al. 2006; PASJ submitted) Cyg X-1 (Kubota et al.)

「すざく」によるGROJ1655-40の観測 Takahashi et al. 2007(PASJ submitted)

「すざく」によるCyg X-1 の観測 Kubota et al. preliminary

6.吸収線

Kotani et al. 2000 「あすか」で発見 GRS J1915-105

- B H , Superliminal Motion
- i~70度

6.吸収線

Ueda et al. 2001

<mark>– NS, 1:</mark> -	个明						
TABLE 1 Results of the Spectral Fit							
Parameter	Best-Fit Value						
Spectral Features in the Iron K Band (SIS)							
Emission-line energy 1 σ line width Equivalent width	6.42 ± 0.08 keV <220 eV 19 ± 8 eV						
Absorption-line energy 1 σ line width Equivalent width	7.01 ± 0.03 keV <70 eV 35 ± 8 eV						
Edge energy Optical depth χ^2 /degrees of freedom ^b	$\begin{array}{c} 7.61 \pm 0.13 \ \text{keV} \\ 0.13 \pm 0.05 \\ 74.4/98 \end{array}$						

GX13+1

Diaz-Trigo et al. 2006, A&A, 445, 179 たくさんのLMXRB(Dipping source) で吸収構造あり

Inclination の大きい系で吸収が見つかる
 GRO J1655-40 i~70
 GRS J1915-105 i~70
 GX13+1 i~不明

■ 降着円盤の外側?内側?のコロナ?
 ■ 光電離

4U1630-47

Kubota et al. 2006 PASJ

鉄の吸収線構造

- X1630-47 Kubota et al. 2006 PASJ
- He-like, H-like
- Blue shift ~1000km s-1
- =L/(nr²), optical depth
 Radius (Photo ionization)
 (0.2-5)x10¹⁰ D₁₀²cm
 - Density
 - $\sim 10^{12} D_{10}^{-2} cm^{-2}$

GROJ1655-40 (Takahashi et al. 2007) No narrow line 吸収線はすべて High/Soft State ■ inclination の大きいもの Low/Hard State では見えない ■ 1655 - 40 (有意に小さい) ■ High/Soft state: 70~120 eV ■ Low/Hard state: <20 eV

High/Soft State

Low/Hard State

No (Thin) Wind? ADAF? Violent Motion?

スタンダード的な降着円盤の存在?

AGN

MCG-5-23-16- J. Reeves et al

- Fe K line needs two components, a narrow core and a broad diskline or gaussian component to fit the red-tail below 6.4 keV
- The reflection component is well constrained with R=1.3, with an Fe abundance of 0.6x solar.
- The edge at 7.1 keV and the Compton hump allows us to determine both parameters.

Simultaneous Suzaku and XMM Observation- notice the excellent agreement on Fe K line shape Iron line Profile of MCG -5-23-16

宇宙の加速領域に迫る

1.大質量星
2.SNR
3.HESS Sources

Non-thermal Component Search

Car (LBV) (Sekiguchi et al. Preliminary)
Carina Nebura (Hamaguchi et al. 2006, PASJ)

Car: 5.6yr Binary Wind-Wind collision - > Non thermal comp?

Non-thermal Component Search

■ 常時加速

ASCA image of SN 1006

Non-thermal Component Search in young SNRs

Energy Frontier = X/TeV

Q.Connection between X-ray and TeV gamma-ray (Between Magnetic Field and CMB photons or

electrons and protons)

加速領域の特定

A map of line X-rays of He-like and H-like Oxygen

A map of non-thermal X-rays

O VII line band

非熱的放射

Un-identified TeV Sources

Significance Map of the HESS Galactic plane survey

HESS Cherenkov Telescope E>200GeV

Imaging Technique Galactic Plane Survey (500 pointing, 230hr)

Galactic Longitude (°)

Namibia 1800m above sea level

TeV sources

TABLE 5 SUMMARY OF POSSIBLE COUNTERPARTS TO THE H.E.S.S. VHE GAMMA-RAY SOURCES IN THE INNER GALAXY

Name	Possible Counterpart	Class	Offset (arcmin)	Distance (kpc)	Luminosity (10 ³⁴ ergs s ⁻¹)	
J1614-518						
J1616-508	PSR J1617-5055	PWN	10.4	6.5	20.2	
J1632-478	IGR J16320-4751	XRB	3			
J1634-472	IGR J16358-4726/G337.2+0.1	XRB/SNR	13/10	/14	/28.3	
J1640-465	G338.3-0.0/3EG J1639-4702	SNR/UID	0/34	8.6	16.2	
J1702-420						
J1708-410						
J1713-381	G348.7+0.3	SNR	0	10.2	5.2	
J1713-397	RX J1713.7-3946 (G347.3-0.5)	SNR	0	1	1.2	
J1745-290	Sgr A East/Sgr A*	SNR/BH	0	8.5	12.8	
J1745-303	3EG J1744-3011	UID	10			
J1747-281	G0.9+0.1	PWN	0	8.5	4.4	
J1804-216	G8.7-0.1/PSR J1803-2137	SNR/PWN	21/10.8	6/3.9	16.5/7.0	
J1813-178	G12.82-0.02	SNR	0	4	3.1	
J1825-137	PSR J1826-1334/3EG J1826-1302	PWN/UID	11/43	3.9/	6.1/	
J1834-087	G23.3-0.3	SNR	0	4.8	4.4	
J1837-069	AX J1838.0-0655	UID	6			

TeV ガンマ線Sources HESS J1616-508

Ahoronian et al. 2006, ApJ 636, 777-797

TeV ガンマ線Sources HESS J1616-508 Suzaku: No detection High L_{TeV}/L_x proton origin (⁰ decay)

Table 3. Spatially extended VHE objects with X-ra

Fig. 9. Spectral energy distribution of HESS J1616 from the X-ray to TeV γ -ray band. The synchrotron radiation from accelerated electrons, which boost the 3 K background up to the TeV energy range, is plotted toward the left for three different values of the magnetic field.

Name	Possible counterpart	Type ^a	Γ_{TeV}^{b}	$f_{\rm TeV}^c$	$N_{\rm H}^d$	$\Gamma_{\mathbf{X}}^{\mathbf{c}}$	$f_{\rm X}^{I}$	f _{Tev} /fx	Reference ^g
HESS J0852-463	RX J0852-4622	SNR	2.1	6.9	4	2.6	~ 10	~ 0.7	1, 2, 3
HESS J1303-631		?	2.4	1.0	20	2.0	< 0.64	> 1.6	4, 5
HESS J1514-591	PSR B1509-58	PWN	2.3	1.6	8.6	2.0	3.2	0.5	6, 7
HESS J1632-478	AX J1631.9-4752	HMXB?	2.1	1.7	210	1.6	1.7	1.0	8, 9
HESS J1640-465	G338.3-0.0	SNR	2.4	0.71	96	3.0	0.30	2.4	8, 10
HESS J1713-397	RX J1713.7-3946	SNR	2.2	3.5	8	2.4	54	0.065	11, 12
HESS J1804-216	Suzaku J1804-2142	?	2.7	0.48	2	-0.3	0.025	19	8, 13
HESS J1804-216	Suzaku J1804-2140	?	2.7	0.48	110	1.7	0.043	11	8, 13
HESS J1813-178	AX J1813-178	?	2.1	0.89	110	1.8	0.70	1.3	8, 14
HESS J1837-069	AX J1838.0-0655	?	2.3	1.4	40	0.8	1.3	1.1	8, 15
TeV J2032+4130		?	1.9	0.20	?	?	< 0.20	>1.0	16
HESS J1616-508		?	2.4	1.7	4.1	2.0	< 0.031	>55	This work

Matsumoto et al. 2006, PASJ in press

TeV ガンマ線Sources HESS J1804-216

Black: 20cmm RADIO white; ROSAT SNR G8.7-0.1

Ahoronian et al. 2006, ApJ 636, 777-797

TeV ガンマ線Sources HESS J1804-216

HESS J1804-216 XIS image and Spectra

Bamba et al. 2006 PASJ in press

Possible Counterpart Search

HESS J 1616-508 (Matsumoto et al, 2006, PASJ)
No bright X-ray souce
HESS J 1804-216 (Bamba et al. 2006 PASJ)
Possible diffuse source

■ 10keV以下

■ 拡散成分には最高の感度とエネルギー分解能 ■ 太陽系内からWHIMまで

10keV以上 最高の感度 宇宙の加速領域 コンパクト星や極限領域に迫る

J.M.Miller et al. 2006, Nature

GRO J1655-40

- Chandra HETGS
- X-ray absorbing wind must be powered by a magnetic process

GRO J1655-40 7.0Mo BH + F3IV~F6IV (2.3Mo) 2.6day orbital period inclination of 67-85 (nearly edge-on) L=3.3x10³⁷ erg s⁻¹ (d=3.2kpc) (4% Eddington limit of 7Mo)

90 absorption lines (> 5) Lines show blue-shifts in the 300-1600 km s⁻¹ Spectra contain no strong emission lines

幅は~300km sec⁻¹

