理論懇シンポジウム 2006年12月26日@立教大学

Anisotropy in the gamma-ray sky and prospects for GLAST

Shin'ichiro Ando

Theoretical Astrophysics, California Institute of Technology

In collaboration with E. Komatsu (Texas), T. Narumoto, T. Totani (Kyoto)

1. Introduction: Unresolved mystery in the high-energy sky

1. Introduction: Unresolved mystery in the high-energy sky

- What are blazars?
 - ~60 were detected with EGRET
 - What are the emission mechanisms?
 - Are they beamed AGNs?—Is AGN unification picture really right?
- What is the origin of cosmic gamma-ray background?
 - EGRET discovered isotropic gamma-ray background in GeV region
 - Can unresolved astrophysical sources explain all the flux?
 - Do we have chance to see signature of dark matter annihilation?

GLAST: Gamma Ray Large Area Space Telescope

- GLAST is equipped with a large volume gamma-ray detector (LAT)
 - Sensitivity covers 30 MeV–300 GeV
 - Very large field of view (2.4 sr), enabling all sky survey
 - Point source flux sensitivity: 2×10⁻⁹ cm⁻² s⁻¹, 50 times better than EGRET
 - Better map of (1) point sources and (2) diffuse radiation

2. Point source anisotropy: blazars for GLAST

Blazar luminosity function: How many at GLAST?

- Luminosity-dependent density evolution (LDDE) model motivated by X-ray AGN observation fits the data very well
- The best fit model predicts ~3,000 blazars from all sky

Is blazar clustering detectable with GLAST?

- Blazars should cluster spatially tracing the dark matter distribution
- Given the large number statistics (~3,000), can the spatial clustering be detectable with GLAST?
- We can compare data immediately with prediction of angular power spectrum
 - One can directly get blazar bias
 - This provides an independent test of AGN unification picture
- This is a very straightforward and important thing to do; nevertheless has not been done by anybody

Formulation: Angular power spectrum

Everything is in textbook by Peebles (1980)

Angular correlation function:

Blazar bias

$$\mathcal{N}^{2}w(\theta) = \int_{0}^{z_{\text{max}}} dz \, \frac{d^{2}V}{dzd\Omega} \chi(z)^{2} \phi(z)^{2} \overline{b}_{B}(z)^{2}$$
$$\times \int_{-\infty}^{\infty} du \, \xi_{\text{lin}} \left(\sqrt{u^{2} + \chi(z)^{2}\theta^{2}}, z \right)$$

Angular power spectrum:

$$C_l = C_l^P + C_l^C$$

$$C_l^P = \mathcal{N}^{-1}$$

$$C_l^C = 2\pi \int_{-1}^1 d\cos\theta \ P_l(\cos\theta) w(\theta)$$

Results:

(i) Angular correlation and power spectrum

LDDE1	Best fit model	
LDDE2	Explains 100% of gamma-ray background	

Point source flux limit: $2, 3, 4 \times 10^{-9} \text{ cm}^{-2} \text{ s}^{-1}$

Ando et al., astro-ph/0610155

Ando et al., astro-ph/0610155

$$(\delta C_l)^2 = \frac{2C_l^2}{(2l+1)\Delta l f_{\text{sky}}}$$

- We can detect blazar correlation at large angular scale
- This directly tells us blazar bias

Multipole l

(iii) Dependence on blazar bias and other observations

- Average over large scale: 2 ≤ l ≤ 30
- Correlation is detectable for $b_B > 1.2$ (LDDE1), and $b_B > 0.5$ (LDDE2)
- Optical quasar gives:
 b_Q ~ 0.8 at relevant
 redshift range
- X-ray AGNs seem more strongly clustered with b ~ 3-4

Ando et al., astro-ph/0610155

Discussion: Example strategy for GLAST point source survey

1. Source detection

2. Removing galaxy clusters

Catalog may contain galaxy clusters. These can be removed by using the FIRST radio survey

3. <u>Updating blazar luminosity function</u>

According to the source number, we may update the luminosity function

4. Analysis of angular power spectrum

We can constrain the blazar bias, even before follow-up observations

5. Completion of follow-ups: beginning of precision study

Analysis with more precise luminosity function. One may also use 3D power spectrum

3. Anisotropy of cosmic gammaray background (CGB) and dark matter annihilation

Dark matter (WIMP) annihilation

- If dark matter is WIMP, it may annihilates into visible photons
- WIMP mass is likely around GeV-TeV, so GLAST might have good chance to detect the signature
- WIMP annihilation in cosmological dark halos may thus contribute significantly to the CGB flux

CGB anisotropy from dark matter annihilation

- Astrophysical sources like blazars and clusters of galaxies cannot fully explain the observed CGB
 - but only 25–50% using the latest blazar luminosity function (Narumoto & Totani 2006)
- If dark matter annihilation contributes significantly, it might be observed through anisotropy signature of the CGB
 - Potentially a smoking gun of dark matter annihilation
 - Energy spectrum might not be sufficient for such a strong claim

Angular power spectrum

 Projected along the line of sight is the CGB intensity

 Angular power spectrum, C_I, is related to the spatial power spectrum via Limber's equation

- 3D correlation can be modeled, using
 - halo mass function, and
 - density profile in each halo

Result: angular power spectrum

Ando et al., astro-ph/0612467

- At 10 GeV for 2-year observation
- If dark matter annihilation contributes > 30% of the CGB, GLAST should be able to detect anisotropy
- Detector background is negligible
- Galactic emission (foreground) is small at 10 GeV

4. Conclusions I: Point source anisotropy

- Blazars are the most promising source for GLAST: 1,000–10,000 are expected from all-sky survey
- We calculated angular power spectrum of these blazars and showed that
 - it would be detectable at large angular scales, dominated by low-redshift (faint blazars);
 - spatial clustering would be measurable *if* blazar bias were larger than 1.2 (0.5) for the best-fit (optimistic) luminosity function
- This would be a first direct measurement of blazar bias, and could provide further test of AGN unification picture

4. Conclusions II: Anisotropy of background radiation

- The CGB anisotropy would be a key to revealing the origin of CGB, and potentially be a smoking gun of annihilating dark matter
- The resulting angular spectrum would be very different from the case of other sources
- We developed a new formalism for that calculation
- We showed that if the annihilating dark matter is a main CGB constituent,
 GLAST can detect anisotropy in a few years
- This is also true even with the existence of other sources like blazars, if the current dark matter contribution exceeds 30% at 10 GeV

Redshift distribution of blazars

Bias modeling

Effective bias

Clusters of galaxies

Model	$lpha_{p,e}$	$\epsilon_{p,e}$	N	$\mathcal{N} \left(\mathrm{sr}^{-1} \right)$
pp1	2.2	0.5	6600	530
pp2	2.2	0.1	1100	88
pp3	2.2	0.01	63	5.0
IC1	2	0.05	3700	290
IC2	2	0.01	430	34
IC3	2.2	0.01	62	4.9

Multipole l

Mixed case of blazars and galaxy clusters

A few equations..., if you want

Gamma-ray intensity:

$$I_{\gamma}(\hat{\boldsymbol{n}}, E_{\gamma}) = \int dr \, \delta^{2}(r, \hat{\boldsymbol{n}}r) W([1+z]E_{\gamma}, r)$$

Spherical harmonic expansion:

$$\frac{\delta I_{\gamma}(\hat{\boldsymbol{n}})}{\langle I_{\gamma}\rangle} = \sum_{lm} a_{lm} Y_{lm}(\hat{\boldsymbol{n}}) \qquad C_l = \langle |a_{lm}|^2 \rangle$$

Limber's equation:

$$\langle I_{\gamma} \rangle^{2} C_{l} = \int \frac{dr}{r^{2}} \left\{ W([1+z]E_{\gamma}, r) \right\}^{2} P_{f} \left(k = \frac{l}{r}; r \right)$$

$$f = \delta^{2} - \langle \delta^{2} \rangle$$

What are backgrounds?

- Detector background
 - Negligible, being 5% of the CGB above 100 MeV (even smaller at 10 GeV)

From http://www-glast.stanford.edu/

What are backgrounds?

galdef ID 44_500180

0.25<<179.75, 180.25<<359.75
89.75
89.75
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25
80.25<

- Galactic cosmic rays a foreground
- It strongly depends on the galactic latitude
- The flux is about one order of magnitude smaller than CGB for |b| > 20 deg, safely negligible

Substructure with disruption

Host-halo dominated case

