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1. Introduction:
Unresolved mystery in the high-energy sky

• What are blazars?

• ~60 were detected with EGRET

• What are the emission mechanisms?

• Are they beamed AGNs?—Is AGN unification picture really right?

• What is the origin of cosmic gamma-ray background?

• EGRET discovered isotropic gamma-ray background in GeV region

• Can unresolved astrophysical sources explain all the flux?

• Do we have chance to see signature of dark matter annihilation?



GLAST:
Gamma Ray Large Area Space Telescope

• GLAST is equipped with a large volume gamma-ray 
detector (LAT)

• Sensitivity covers 30 MeV–300 GeV

• Very large field of view (2.4 sr), enabling all sky survey

• Point source flux sensitivity: 2×10−9 cm−2 s−1, 50 times 
better than EGRET

• Better map of (1) point sources and (2) diffuse radiation



2. Point source anisotropy: 
blazars for GLAST

Ando, Komatsu, Narumoto, & Totani, 
MNRAS in press; astro-ph/0610155



Blazar luminosity function: How many at 
GLAST?

• Luminosity-dependent density evolution (LDDE) model motivated by X-ray 
AGN observation fits the data very well

• The best fit model predicts ~3,000 blazars from all sky
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FIG. 3.— Histogram of radio to gamma-ray luminosity ratio, p= log10(Lγ/Lr), of the EGRET blazars. The luminosities are νLν in the restframe 100 MeV
and 2.7 GHz bands, respectively. The solid curve is a Gaussian fit to the histogram.

FIG. 4.— The solid contours show the 68%, 95% and 99% C.L. regions for the PLE model parameters [the faint-end slope index γ1 and the mean gamma-ray
to radio luminosity ratio, 〈p〉 = 〈log10(Lγ/Lr)〉]. The best-fit values, (〈p〉,γ1) = (3.28,0.69), are shown by the cross. The dashed contours correspond to
η = 10−0.33, 10−0.66, 10−1.0, and 10−1.33, respectively, where η is the ratio of the normalizations of the gamma-ray to radio luminosity functions.
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FIG. 5.— Redshift distribution of the EGRET blazars. The histogram is the EGRET data. The solid and dashed curves are the best-fit models for the LDDE and
PLE models, respectively, from the likelihood analysis. The dotted curve is obtained from the blazar GLF model of SS96. The error bars are 1σ Poisson error.
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FIG. 6.— Luminosity distribution of the EGRET blazars. The line markings are the same as Figure 5. The luminosity is νLν at 100 MeV. The error bars are
1σ Poisson error.

FIG. 7.— The solid contours and crosses are the same as Figure 4 showing the fit by the PLE model. The dashed contours show 25%, 50%, 75%, and 100%

contribution of unresolved blazars to the EGRB. The upper left, upper right, lower left, and lower right panels are for the cases of Lγ,min = 1043, 1042, 1041, and

1040 erg s−1, respectively.
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Is blazar clustering detectable with GLAST?

• Blazars should cluster spatially tracing the dark matter distribution

• Given the large number statistics (~3,000), can the spatial clustering be 
detectable with GLAST?

• We can compare data immediately with prediction of angular power spectrum

• One can directly get blazar bias

• This provides an independent test of AGN unification picture

• This is a very straightforward and important thing to do; nevertheless has not 
been done by anybody



Formulation: Angular power spectrum

• Everything is in textbook by Peebles (1980)

θ

Angular correlation function:

2 S. Ando et al.

1998; Totani & Kitayama 2000). We thus also calculate the
spatial clustering of clusters of galaxies in γ-rays and discuss
its detectability with GLAST.

This paper is organized as follows. In Section 2 we cal-
culate the angular power spectrum of blazars that would
be detected by GLAST. In Section 3 we study detectability
of the spatial correlation of blazars and discuss current (in-
direct) observational constraints on the bias of blazars. In
Section 4 we calculate the angular power spectrum of galaxy
clusters. Section 5 is devoted to further discussions, and we
conclude in Section 6.

2 ANGULAR POWER SPECTRUM OF

BLAZARS

2.1 Formalism

The angular power spectrum of blazars that would be de-
tected by GLAST is given by the sum of the shot (Poisson)
noise term, CP

l , and the correlation term, CC
l , as (Peebles

1980)

Cl = CP
l + CC

l , (1)

CP
l = N−1, (2)

CC
l = 2π

∫ 1

−1

d cos θ Pl(cos θ)w(θ), (3)

where N ≡ dN/dΩ is the number of blazars per solid angle,
and w(θ) is the angular correlation function of blazars that
would be detected by GLAST. Note that the shot noise term
is independent of multipoles.

A standard procedure to calculate the angular correla-
tion function is as follows. We model the 3-d spatial correla-
tion function of blazars, ξ(r, z), as the correlation function of
dark matter particles, multiplied by the “bias” factors that
depend on physics of formation and evolution of blazars in
dark matter haloes. We then project the resulting 3-d cor-
relation function on the sky to calculate the 2-d angular
correlation function of blazars, w(θ). As the bias factors de-
pend on redshift and luminosity of blazars, we model ξ(r, z)
as ξ(r; Lγ,1, Lγ,2|z) = ξlin(r, z)bB(Lγ,1, z)bB(Lγ,2, z), where
r = |%x2 − %x1| is the distance between two blazars, Lγ,1 and
Lγ,2 are their luminosities, and ξlin(r, z) is the 3-d correla-
tion function of linear dark matter fluctuations. As we show
in this paper the angular correlation function of blazars may
be detectable only on large scales, and thus the linear cor-
relation function and the linear bias model would provide a
good approximation. By projecting the 3-d correlation func-
tion on the sky, one obtains (Peebles 1980)

N 2w(θ) =

∫ zmax

0

dz
d2V
dzdΩ

χ(z)2φ(z)2bB(z)2

×

∫

∞

−∞

du ξlin

(

√

u2 + χ(z)2θ2, z
)

, (4)

where χ(z) is the comoving distance out to an object at z,
d2V/dzdΩ is the comoving volume element per unit solid
angle and per unit redshift range, bB(z) is the average bias

of blazars weighted by the γ-ray luminosity function (GLF)
of blazars,1 ργ(Lγ , z):

bB(z) ≡
1

φ(z)

∫

∞

Lγ(Fγ,lim,z)

dLγ ργ(Lγ , z)bB(Lγ , z), (5)

and φ(z) is the cumulative GLF of blazars, i.e., GLF inte-
grated from a given minimum luminosity cut-off,

φ(z) ≡

∫

∞

Lγ(Fγ,lim,z)

dLγ ργ(Lγ , z). (6)

Note that we have not used the so-called “small-angle
approximation” or “Limber’s approximation,” as we are
mainly interested in the signals on large angular scales,
θ ! 10◦.

We calculate ξlin(r, z) from the power spectrum of linear
matter density fluctuations, Plin(k):

ξlin(r, z) =

∫

k2dk
2π2

Plin(k)
sin kr

kr
. (7)

We use the linear transfer function given in Eisenstein & Hu
(1999) to compute Plin(k).

Equations (2) and (3) suggest that CP
l = N−1 dom-

inates when the number of blazars detected by GLAST is
small, making it difficult to detect the correlation term. It is
therefore very important to understand how many blazars
one can detect with GLAST. In the next subsection we cal-
culate the expected number count of blazars for GLAST
using the latest GLF of blazars (Narumoto & Totani 2006).

2.2 Gamma-ray luminosity function of blazars

The basic idea behind the model of the GLF of blazars pro-
posed by Narumoto & Totani (2006) is that the jet activity
that powers γ-ray emission from blazars must be related
to accretion onto the central black holes, from which X-ray
emission emerges; thus, the X-ray and γ-ray luminosity of
blazars must be correlated. We use the following relation
between GLF of blazars, ργ , and X-ray luminosity function
(XLF) of AGNs, ρX :

ργ(Lγ , z) = κ
LX

Lγ
ρX(LX , z). (8)

The advantage of this method is that the XLF has been
determined accurately by the extensive study of the X-ray
background (Ueda et al. 2003; Hasinger et al. 2005), and
thus the predicted GLF would also be fairly accurate, pro-
vided that the γ-ray luminosity and X-ray luminosity of
blazars are tightly correlated. Since not all AGNs detected
in X-rays are blazars, we have introduced a normalization
factor, κ. We relate the γ-ray luminosity, Lγ , and X-ray
luminosity, LX , of blazars by a linear relation with the con-
stant of proportionality given by 10q :

Lγ = 10qLX , (9)

where Lγ represents νLν at 100 MeV, and LX is the X-
ray luminosity integrated over the ROSAT band, 0.5–2 keV.
(Both are evaluated at the source rest frame.) We convert
the measured flux to the rest-frame luminosity by specifying

1 The luminosity function represents the number of sources per
unit comoving volume and unit luminosity range.
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χ(z)2φ(z)2bB(z)2

×

∫

∞

−∞

du ξlin

(

√

u2 + χ(z)2θ2, z
)

, (4)

where χ(z) is the comoving distance out to an object at z,
d2V/dzdΩ is the comoving volume element per unit solid
angle and per unit redshift range, bB(z) is the average bias

of blazars weighted by the γ-ray luminosity function (GLF)
of blazars,1 ργ(Lγ , z):

bB(z) ≡
1

φ(z)

∫

∞

Lγ(Fγ,lim,z)

dLγ ργ(Lγ , z)bB(Lγ , z), (5)

and φ(z) is the cumulative GLF of blazars, i.e., GLF inte-
grated from a given minimum luminosity cut-off,

φ(z) ≡

∫

∞

Lγ(Fγ,lim,z)
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We use the linear transfer function given in Eisenstein & Hu
(1999) to compute Plin(k).

Equations (2) and (3) suggest that CP
l = N−1 dom-

inates when the number of blazars detected by GLAST is
small, making it difficult to detect the correlation term. It is
therefore very important to understand how many blazars
one can detect with GLAST. In the next subsection we cal-
culate the expected number count of blazars for GLAST
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posed by Narumoto & Totani (2006) is that the jet activity
that powers γ-ray emission from blazars must be related
to accretion onto the central black holes, from which X-ray
emission emerges; thus, the X-ray and γ-ray luminosity of
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between GLF of blazars, ργ , and X-ray luminosity function
(XLF) of AGNs, ρX :
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Lγ
ρX(LX , z). (8)

The advantage of this method is that the XLF has been
determined accurately by the extensive study of the X-ray
background (Ueda et al. 2003; Hasinger et al. 2005), and
thus the predicted GLF would also be fairly accurate, pro-
vided that the γ-ray luminosity and X-ray luminosity of
blazars are tightly correlated. Since not all AGNs detected
in X-rays are blazars, we have introduced a normalization
factor, κ. We relate the γ-ray luminosity, Lγ , and X-ray
luminosity, LX , of blazars by a linear relation with the con-
stant of proportionality given by 10q :

Lγ = 10qLX , (9)

where Lγ represents νLν at 100 MeV, and LX is the X-
ray luminosity integrated over the ROSAT band, 0.5–2 keV.
(Both are evaluated at the source rest frame.) We convert
the measured flux to the rest-frame luminosity by specifying

1 The luminosity function represents the number of sources per
unit comoving volume and unit luminosity range.
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The advantage of this method is that the XLF has been
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blazars are tightly correlated. Since not all AGNs detected
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stant of proportionality given by 10q :
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where Lγ represents νLν at 100 MeV, and LX is the X-
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(Both are evaluated at the source rest frame.) We convert
the measured flux to the rest-frame luminosity by specifying

1 The luminosity function represents the number of sources per
unit comoving volume and unit luminosity range.

c© 2006 RAS, MNRAS 000, 1–14

Angular power 
spectrum:

Blazar bias
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Figure 2. (Left) Angular correlation function, w(θ), and (Right) correlation term of the angular power spectrum, l(l + 1)CC
l /2π, of the

blazars that would be detected by GLAST. Both have been divided by the average bias squared; thus plotted quantities are w(θ)/b
2
B and

l(l+1)CC
l /(2πb

2
B). The dotted, solid, and dashed lines show the predictions for the limiting flux of Fγ,lim = 2, 3, and 4×10−9 cm−2 s−1,

respectively. The top panels are for the LDDE1 model, while the bottom panels are for the LDDE2 model.

Our results depend on the luminosity cutoff of the GLF,
Lγ,min, as the correlation at large separations (l ! 30) is
dominated mainly by relatively nearby (less bright) sources.
We have therefore performed the same calculations with
different Lγ,min (with the other parameters of the LDDE1
model held fixed), and found that the correlation would be

detectable (i.e., C
C

/δC > 1) for the average bias greater
than 0.9 and 1.7, for Lγ,min = 1040 and 1042 erg s−1, re-
spectively.

One may also ask how these results would change, if
we chose other GLF models. The “pure-luminosity evolu-
tion” (PLE) model has been used traditionally in the litera-
ture (Stecker & Salamon 1996; Chiang & Mukherjee 1998),
while the LDDE model fits the EGRET blazar properties
better (Narumoto & Totani 2006). Motivated by the cor-
relation between radio and γ-ray luminosities of blazars,
Stecker & Salamon (1996) used the PLE model to obtain
the GLF of blazars. We find that the large-angle correlation
(l " 30) is more difficult to detect in their model: the correla-
tion would be detectable only when bB > 4.2. Their model,
however, was not intended to reproduce the redshift and
luminosity distributions of the EGRET blazars, and thus
their fit to these data is not very good. Chiang & Mukherjee

(1998) improved the PLE model by adjusting a few pa-
rameters such that the model can reproduce the distribu-
tion of EGRET blazars. (Although the authors did not use
the radio and γ-ray luminosity relation, we incorporate this
in our calculations; see Narumoto & Totani (2006) for de-
tails.) Again, we find that the correlation signal is more
difficult to detect in the best-fit PLE model: the correla-
tion would be detectable only when bB > 6.9. These results
are because the PLE model predicts the blazar distribu-
tion that is much more biased toward the high redshift (see
Fig. 11 of Narumoto & Totani (2006)), and hence, the large-
separation power (due mainly to low-redshift blazars) is sup-
pressed. In fact, the results improve if we instead adopt the
smaller separation, 30 " l " 300, where the high-redshift
contribution becomes larger. The sensitivity to the bias pa-
rameter goes down to bB > 2.4 and bB > 3.0, respectively
for the Stecker & Salamon (1996) and Chiang & Mukherjee
(1998) models. On the other hand, as we have already shown,
the latest GLF from the LDDE model, which best describes
the distribution of EGRET blazars, predicts that the corre-
lation would be detectable for bB of order unity.

c© 2006 RAS, MNRAS 000, 1–14

Results:
(i) Angular correlation and power spectrum

Point source flux limit: 
2, 3, 4 × 10−9 cm−2 s−1 

LDDE1 Best fit model

LDDE2
Explains 100% 
of gamma-ray 
background

Ando et al., astro-ph/0610155
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Figure 1. Redshift distribution of blazars that would be detected
by GLAST, for LDDE1 (solid) and LDDE2 (dashed) models. (See
Table 1 for the model parameters as well as for the expected
number of blazars.) The thick solid line shows the LDDE1 model
with Lγ,min = 1041 erg s−1, while the thin solid lines show the
LDDE1 model with Lγ,min = 1040 erg s−1 and 1042 erg s−1:
the larger the Lγ,min is, the fewer the low-z blazars would be
detected.

Figure 1 shows the redshift distribution of GLAST
blazars predicted from the LDDE1 and LDDE2 model. For
both cases, the distribution exhibits a sharp cut-off around
z = 0.01, which is due to our assumption that no blazars
fainter than Lγ,min would exist; a larger Lγ,min results in a
larger cut-off redshift. Nevertheless, since only a small frac-
tion of the distribution is eliminated by this effect, the to-
tal number of blazars that would be detected by GLAST,
N , hardly changes; for example, we expect 3200 and 2900
blazars to be observed by GLAST for Lγ,min = 1040 and 1042

erg s−1 (both for the LDDE1 parameters), respectively. On
the other hand, we shall show in Section 3.1 that Lγ,min has
an important consequence for detectability of the anisotropy
signal.

Figure 2 shows the angular correlation function, w(θ)
(left panels), and the correlation term of the angular power
spectrum, l(l+1)CC

l /2π (right panels), divided by the aver-
age bias squared, for the LDDE1 (top panels) and LDDE2
(bottom panels) model. In each panel we vary the GLAST
LAT point-source flux sensitivity, Fγ,lim, from 2 × 10−9 to
4 × 10−9 cm−2 s−1. As expected, the clustering is stronger
when more sources are observed, i.e., LDDE2 and lower
Fγ,lim.

3 DETECTABILITY OF THE BLAZAR

CORRELATION

3.1 Signal-to-noise vs blazar bias

As the correlation function and power spectrum are propor-

tional to the average bias squared, w(θ) ∝ b
2
B and CC

l ∝ b
2
B ,

whether or not one can detect the angular clustering of
blazars crucially depends on bB. Before we investigate a
model of the blazar bias, let us ask this question, “how large
bB should be, in order for CC

l to be detected by GLAST?”
The statistical error in the measurement of Cl is given

by the following argument. Assuming statistical isotropy
of the universe, we have 2l + 1 independent samples of
Cl = |alm|2 (with different m’s) per multipole. Here, alm

is the spherical harmonic coefficient of the distribution of
blazars on the sky. One may thus estimate Cl from Cl =
∑l

m=−l |alm|2/(2l + 1). The error in Cl is given by

(δCl)
2 =

2C2
l

(2l + 1)∆lfsky
=

2(CP
l + CC

l )2

(2l + 1)∆lfsky
(17)

where ∆l is the bin size in l space and fsky is a fraction of
the sky covered by observations. For the all-sky survey like
GLAST, we may adopt fsky = 1; we note that the point
source sensitivity becomes worse near the galactic plane be-
cause of strong galactic foreground. As CP

l = N−1 is inde-
pendent of l and depends only on the inverse of the surface
density of blazars, one can fit it and subtract it from the
measured Cl, leaving only CC

l . The error in CC
l , however,

still contains the contribution from CP
l . This shows why it

is important to detect as many blazars as possible (and thus
reduce CP

l as much as possible), in order to measure CC
l .

Figure 3 shows the 1-σ error boxes binned with ∆l =
0.5l for the LDDE1 and LDDE2 model. We show the errors
for the average bias of bB = 1 and 3. (Note that we have
ignored the redshift dependence of bB .) We find that it would
be difficult to detect CC

l for the LDDE1 plus bB = 1 model,
while the other models yield sufficient signal-to-noise ratios.

To increase statistical power one may sum Cl over mul-
tipoles. Let us define the angular power spectrum averaged
over 2 ! l ! 30,2

C(2 ! l ! 30) =
1
29

30
∑

l=2

Cl. (18)

The errors of this quantity is then given by

(δC)2 =
30

∑

l=2

(

∂C
∂Cl

)2

[δCl(∆l = 1)]2

=
1

292

30
∑

l=2

2
(2l + 1)fsky

(CP
l + CC

l )2. (19)

Figure 4 shows C
C

(2 ! l ! 30) as a function of the average
blazar bias, bB , for the LDDE1 (top panel) and LDDE2 (bot-
tom panel) models. The expected 1-σ errors as well as the

Poisson contribution, C
P
, are also shown. For the LDDE1

model we find that GLAST can detect C
C

if bB " 1.2. For
the LDDE2 model the detection is much easier, even for
bB " 0.5.

2 A dipole component, C1, depends on Earth’s motion and is not
considered here.
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(ii) Errors of angular power spectrum

• We can detect blazar 
correlation at large 
angular scale

• This directly tells us 
blazar bias

Ando et al., astro-ph/0610155



(iii) Dependence on blazar bias and other 
observations

• Average over large 
scale: 2 ≤ l ≤ 30

• Correlation is 
detectable for bB > 1.2 
(LDDE1), and bB > 0.5 
(LDDE2)

• Optical quasar gives: 
bQ ~ 0.8 at relevant 
redshift range

• X-ray AGNs seem more 
strongly clustered with 
b ~ 3–4

Ando et al., astro-ph/0610155



Discussion:
Example strategy for GLAST point source survey

1. Source detection

2. Removing galaxy clusters

Catalog may contain galaxy clusters. These can be removed by using the 
FIRST radio survey

3. Updating blazar luminosity function

According to the source number, we may update the luminosity function

4. Analysis of angular power spectrum

We can constrain the blazar bias, even before follow-up observations

5. Completion of follow-ups: beginning of precision study

Analysis with more precise luminosity function. One may also use 3D 
power spectrum



3. Anisotropy of cosmic gamma-
ray background (CGB) and 
dark matter annihilation

Ando & Komatsu, Phys. Rev. D 73, 023521 (2006)
Ando, Komatsu, Narumoto, & Totani, astro-ph/0612467
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FIG. 1: The CGB spectrum from dark matter annihilation
(dashed) and blazars with the best-fit LDDE GLF (dotted).
Total intensity is shown by the solid curve, and the data points
are from the EGRET data [2].

work which included dark matter substructures [35] has
shown that this is indeed possible with a standard value
of the annihilation cross section, σv = 3×10−26 cm3 s−1,
which gives the right amount of the dark matter density
in the universe if dark matter was thermally produced in
the early universe [27, 29]. On the other hand, anisotropy
depends only on mχ and α. We shall therefore vary α
and see how the results depend on α, while we fix the
mass at 100 GeV throughout the paper.

B. Blazars

If a non-negligible fraction of the CGB flux comes
from astrophysical sources such as blazars and clusters
of galaxies, they inevitably give a background (noise) for
the dark matter detection in the anisotropy signature. It
is thus very important to evaluate the contribution from
the unresolved point sources. We concentrate on blazars
as an example.

To calculate the mean CGB intensity from blazars one
needs the GLF of blazars. We use the latest luminosity
dependent density evolution (LDDE) model, which re-
produces the observed GLF of the EGRET blazars bet-
ter than a traditionally used pure luminosity evolution
model [10]. As the LDDE GLF was originally given for
the luminosity at 100 MeV, we need to generalize it to
the other energies. We do this by specifying the spec-
tral shape; here we assume it to be a power law with
a spectral index of αγ = 2.2 [1]. Then, the luminosity

per unit energy range, L, is connected to the luminos-
ity, Lγ(100 MeV) (= EL at 100 MeV) adopted in the
previous GLF via the following simple relation:

L(Eem) =

(

Eem

100 MeV

)1−αγ Lγ

100 MeV
, (7)

The GLF is accordingly replaced with the one defined
as the comoving number density per unit range in L,
ΦE(L, z), which is related to the original one through

dL ΦE(L, z) = dLγ ργ(Lγ , z), (8)

where we show the energy dependence of the new GLF
explicitly by attaching subscript E. Note that ργ on the
right hand side is given by Eqs. (8) and (10) of Ref. [46].
Using Eqs. (7) and (8), we can rewrite the luminosity and
the GLF at any energies as long as the spectrum is kept
to be a power law with the same index.

The photon flux from the source with luminosity L at
redshift z at energy E is given by

FE(L, z) =
(1 + z)L[(1 + z)E, z]

4πd2
L(z)

, (9)

where dL(z) is the luminosity distance out to a source at
z. The flux sensitivity for point sources of the EGRET is
Fγ,lim " 10−7 cm−2 s−1 above 100 MeV [47], and all the
unresolved sources that give a flux below this threshold
contribute to the CGB. The conversion from the differ-
ential flux per energy, FE , to the integrated flux, Fγ , can
easily be performed by integrating over energy above 100
MeV and assuming the spectrum to be a power law with
an index αγ . One obtains

FE = (αγ − 1)

(

E

100 MeV

)1−αγ

Fγ . (10)

We use this equation and Eq. (9) to calculate the limiting
source luminosity, L(FE,lim, z), from Fγ,lim.

We calculate the mean CGB intensity coming from un-
resolved blazars whose gamma-ray flux is below FE,lim

from

E〈IN (E)〉 =

∫ zmax

0
dz

d2V

dzdΩ

∫ L(FE,lim,z)

0
dL ΦE(L, z)

× FE(L, z), (11)

where we use zmax = 5, and d2V/dzdΩ is the comoving
volume per unit redshift and unit solid angle ranges. We
show in Fig. 1 the CGB spectrum calculated with the
best-fitting LDDE GLF together with the EGRET data.
The predictions fall below the EGRET data, accounting
for only 25–50% of the observed CGB [10, 46].

This is presumably either because there is another class
of objects which can contribute to the CGB by equally
significant amount, or because the best-fitting LDDE

Dark matter (WIMP) annihilation

• If dark matter is WIMP, it may 
annihilates into visible 
photons

• WIMP mass is likely around 
GeV–TeV, so GLAST might 
have good chance to detect 
the signature

• WIMP annihilation in 
cosmological dark halos may 
thus contribute significantly 
to the CGB flux
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General Upper Bound on the Dark Matter Total Annihilation Cross Section
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We consider dark matter annihilation into Standard Model particles and show that the least de-
tectable final states, namely neutrinos, define an upper bound on the total cross section. Calculating
the cosmic diffuse neutrino signal, and comparing it to the measured terrestrial atmospheric neutrino
background, we derive a strong and general bound. Our bound is much stronger than the unitarity
bound at the most interesting masses, shows that dark matter halos cannot be significantly modified
by annihilations, and can be improved by a factor of 10–100 with existing neutrino experiments.

PACS numbers: 95.35.+d, 98.62.Gq, 98.70.Vc, 95.85.Ry

The self-annihilation cross section is a fundamental
property of dark matter. For thermal relics, it sets the
dark matter mass density, ΩDM ! 0.3, and in these and
more general non-thermal scenarios, also the annihila-
tion rate in gravitationally-collapsed dark matter halos
today [1]. How large can the dark matter annihilation
cross section be? There are two general constraints that
bound the rate of dark matter disappearance. (Through-
out, we mean the cross section averaged over the halo
velocity distribution, i.e., 〈σAv〉, where vrms ∼ 10−3c.)

The first is the unitarity bound, developed for the early
universe case by Griest and Kamionkowski [2], and for
the late-universe halo case by Hui [3]. In the plane of
〈σAv〉 and dark matter mass mχ, this allows only the
region below a line 〈σAv〉 ∼ 1/m2

χ (this will be made more
precise below). The second is provided by the model
of Kaplinghat, Knox, and Turner (KKT) [4], in which
significant dark matter annihilation is invoked to resolve
a conflict between predicted (sharp cusps) and observed
(flat cores) halo profiles. Since this tension may have
been relaxed [1], we reinterpret this type of model as
an upper bound, allowing only the region below a line
〈σAv〉 ∼ mχ. That the KKT model requires 〈σAv〉 values
! 107 times larger than the natural scale for a thermal
relic highlights the weakness of the unitarity bound in
the interesting GeV range. However, there have been no
other strong and general bounds to improve upon these.

While these bound the disappearance rate of dark mat-
ter, they say nothing about the appearance rate of annihi-
lation products, instead assuming that they can be made
undetectable. To evade astrophysical limits, the branch-
ing ratios to specific final states can be adjusted in model-
dependent ways. However, a model-independent fact is
that the branching ratios for all final states must sum
to 100%. The most reasonable assumption is that these
final states are Standard Model (SM) particles, as it is
assumed the dark matter is the lightest stable particle in
the Beyond-SM sector. See Fig. 1.
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FIG. 1: Annihilation of dark matter into SM final states.
Since all final states except neutrinos produce gamma rays
(see text), we can bound the total cross section from the neu-
trino signal limit, i.e., assuming Br(“Invisible”) = 100%.

We will show that the most difficult SM final state
to detect is neutrinos; but that surprisingly strong flux
limits can be derived from recent high-statistics data;
and that we may interpret these as bounding all SM fi-
nal states, and hence the dark matter total annihilation
cross section. To be robust and general, our bound is de-
rived with very conservative assumptions. This provides
a strong new constraint on the particle physics of the
dark matter, and implies that dark matter halos cannot
have been significantly modified by annihilations.

Probing Dark Matter Disappearance.— For dark
matter that is a thermal relic, the cross section required
to ensure ΩDM ∼ 0.3 is 〈σAv〉 ∼ 3 × 10−26 cm3 s−1 [1].
KKT discussed several models in which the dark matter
is not a thermal relic, e.g., it might have acquired mass
only in the late universe, or have been produced through
the late decays of heavier particles [4]. As emphasized in
Refs. [3, 4], it is interesting to ask how large the annihila-
tion cross section could be in halos today, irrespective of
possible early-universe constraints. This addresses more
directly the questions of particle properties and the ef-
fects of annihilations on dark matter halos.

In the KKT model, the required cross section to suffi-
ciently distort the dark matter profiles of galaxies is

〈σAv〉KKT ! 3 × 10−19 cm3

s

[ mχ

GeV

]

. (1)

GeV-γ 



CGB anisotropy from dark matter annihilation

• Astrophysical sources like blazars and clusters of galaxies cannot 
fully explain the observed CGB

• but only 25–50% using the latest blazar luminosity function 
(Narumoto & Totani 2006)

• If dark matter annihilation contributes significantly, it might be 
observed through anisotropy signature of the CGB

• Potentially a smoking gun of dark matter annihilation

• Energy spectrum might not be sufficient for such a strong claim



Angular power spectrum

• Projected along the line of sight is the 
CGB intensity

• Angular power spectrum, Cl, is related 
to the spatial power spectrum via 
Limber’s equation

• 3D correlation can be modeled, using

• halo mass function, and

• density profile in each haloθ (= π / l)

Dark matter halo



Result: angular power spectrum

Ando et al., astro-ph/0612467
• At 10 GeV for 2-year 

observation

• If dark matter annihilation 
contributes > 30% of the 
CGB, GLAST should be 
able to detect anisotropy

• Detector background is 
negligible

• Galactic emission 
(foreground) is small at 
10 GeV



4. Conclusions I:
Point source anisotropy

• Blazars are the most promising source for GLAST: 1,000–10,000 are expected 
from all-sky survey

• We calculated angular power spectrum of these blazars and showed that

• it would be detectable at large angular scales, dominated by low-redshift 
(faint blazars);

• spatial clustering would be measurable if blazar bias were larger than 1.2 
(0.5) for the best-fit (optimistic) luminosity function

• This would be a first direct measurement of blazar bias, and could provide 
further test of AGN unification picture



4. Conclusions II:
Anisotropy of background radiation

• The CGB anisotropy would be a key to revealing the origin of CGB, and 
potentially be a smoking gun of annihilating dark matter

• The resulting angular spectrum would be very different from the case of other 
sources

• We developed a new formalism for that calculation

• We showed that if the annihilating dark matter is a main CGB constituent, 
GLAST can detect anisotropy in a few years

• This is also true even with the existence of other sources like blazars, if the 
current dark matter contribution exceeds 30% at 10 GeV



Appendix: Supplementary materials
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Effective bias



Clusters of galaxies
10 S. Ando et al.

Table 2. Model parameters, α and ε, the expected number count,
N , the surface density, N , the average bias, bC(z = 0.01), of
clusters that would be detected by GLAST. The last column lists
the expected signal-to-noise ratio for detecting the correlation
power spectrum averaged over 2 ! l ! 30.

Model αp,e εp,e N N (sr−1) bC C
C

/δC

pp1 2.2 0.5 6600 530 2.0 7.0
pp2 2.2 0.1 1100 88 2.5 4.6
pp3 2.2 0.01 63 5.0 3.3 1.9
IC1 2 0.05 3700 290 1.4 4.5
IC2 2 0.01 430 34 1.7 2.4
IC3 2.2 0.01 62 4.9 2.2 1.3

Figure 8. Redshift distribution of clusters of galaxies that would
be detected by GLAST for (a) proton-proton collision and (b)
inverse-Compton scattering models. Model parameters are given
in Table 2.

where Rform(Mh, z) is the formation rate of clusters with
mass of Mh at z, per comoving volume, and ∆tγ is the time
scale during which γ-rays are radiated efficiently from each
cluster. We calculate ∆tγ as either the inverse-Compton
cooling time or the shock wave propagation time (whichever
is longer): ∆tγ = max{tIC, tshock}. In most cases of our in-
terest, the latter is always much longer than the former, and
therefore, ∆tγ = tshock ! rvir/vs = 1.5(1 + z)−3/2 Gyr, in-
dependent of Mh, where rvir is the virial radius and vs the
sound speed. The formation rate of clusters, Rform(Mh, z),
is given by the time-derivative of the halo mass function,
dnh/dMh(Mh, z), corrected for the halo destruction rate
(Kitayama & Suto 1996).

Similar to the proton-proton collision case, we calcu-
late the total energy of relativistic electrons, Ee, by as-
suming that a fraction, εe, of the gravitational binding
energy of baryons is given to electrons. We use a power
law with an index of αe (either 2 or 2.2; see Table 2) for
the γ-ray spectrum, with an upper cutoff whose energy

is determined by a balance between the acceleration time
scale and the cooling time scale. To calculate the acceler-
ation time scale we use the magnetic field energy given by
εB = 10−3 times the binding energy of baryons. We choose
(αe, εe) = (2, 0.05), (2, 0.01), and (2.2, 0.01) as our models,
and we call them IC1, IC2, and IC3, respectively. The IC1
model is investigated by Totani & Kitayama (2000), and it
gives maximally allowed number of γ-ray emitting clusters,
as the IC1 model predicts the EGRB flux that is as large
as what is measured by EGRET. These models are again
summarized in Table 2 and Fig. 8.

4.2 Angular power spectrum of galaxy clusters

from GLAST

The angular power spectrum of clusters of galaxies is given
by equations (1)–(4) with the averaged blazar bias, bB , re-
placed by the average cluster bias,

bC,pp(z) =
1

φC,pp(z)

∫

∞

Mh(Fγ,lim,z)

dMh
dnh

dMh
(Mh, z)

× bh(Mh, z), (26)

bC,IC(z) =
1

φC,IC(z)

∫

∞

Mh(Fγ,lim,z)

dMh Rform(Mh, z)∆tγ

× bh(Mh, z), (27)

for the proton-proton collision model and the inverse-
Compton model, respectively.

Figure 9 shows the angular power spectrum of these
γ-ray clusters with the binned error boxes (∆l = 0.5l) as
well as the shot noise term for (a)–(c) proton-proton colli-
sion and (d)–(f) inverse-Compton models. The correlation is
quite significant particularly for optimistic models predict-
ing large number of γ-ray emitting clusters being detected
by GLAST, i.e., pp1 and IC1. The last column of Table 2
shows the signal-to-noise ratio for the power spectrum av-
eraged over 2 ! l ! 30, C/δC. We find that the signal-to-
noise ratio exceeds unity for all the models that we have
considered: the minimum is C/δC = 1.3 for IC3, and the
maximum is 7.0 for pp1, despite the fact that only small
number of clusters are expected to be seen in the GLAST
data. This is because clusters of galaxies are formed in the
high-density peaks and thus are highly biased. The sixth
column of Table 2 shows the average bias factors of clusters
at z = 0.01.

5 DISCUSSION

5.1 Admixture of blazars and galaxy clusters

While follow-up programs should reveal the identity of the
GLAST γ-ray sources and also some of the galaxy clus-
ters might appear as extended sources, at very early stage
of GLAST observational campaign, all the point sources
should more generally be considered to be mixed of various
emitters. Here we consider two-population case, blazars and
galaxy clusters. Our purpose in this section is to investigate
whether it is possible to distinguish the blazar component
from that of clusters by the angular clustering, even before
the follow-ups.

When there are more than one species of sources on

c© 2006 RAS, MNRAS 000, 1–14



Mixed case of blazars and galaxy clusters



A few equations..., if you want

Cl = 〈|alm|2〉
δIγ(n̂)

〈Iγ〉
=

∑

lm

almYlm(n̂)

2

fraction. The future observation of the CGB might reveal
its origin and find clear evidence of particle dark matter.

Although the CGB is isotropic at the leading order,
the anisotropy under the isotropic component might be
observable with the future detectors with an enhanced
sensitivity and angular resolution, such as the Gamma
Ray Large Area Space Telescope (GLAST). We believe
that the CGB anisotropy could be a key to solve the prob-
lem, potentially being a smoking gun of the dark-matter
annihilation. In this paper, we develop a novel formal-
ism to give the angular power spectrum of the CGB from
dark-matter annihilation. The analytic expression is de-
rived incorporating the hierarchical clustering picture of
dark matter halos, and then the angular power spectrum
is obtained for both the supersymmetric neutralino and
the MeV dark matter. Then we discuss the detectability
of the CGB anisotropy at the future projects such as the
GLAST in the case of the neutralino dark matter, show-
ing that the anisotropy could be detectable for five-year
operation of the GLAST. We also propose the necessary
sensitivity for future detectors in order to obtain the sig-
nificant signature of the anisotropy in the MeV region.
In the MeV region, the CGB anisotropy due to type Ia
supernovae has been discussed in Ref. [15], being com-
plementary to the present study.

This paper is organized as follows. In Sec. II, we briefly
review the isotropic CGB due to the dark matter anni-
hilation. Section III is devoted to formalism of the CGB
anisotropy in the context of the halo models. Results
of the angular power spectrum is then shown in Sec. IV
for both the neutralino and MeV dark matter, compared
with the expected detector sensitivities. Discussions are
given in Sec. V, on other potential astrophysical sources
that also contribute to the CGB (Sec. VA), and on dark-
matter substructures (Sec. VB). In Sec. VI, we conclude
the present paper with a brief summary.

II. COSMIC GAMMA-RAY BACKGROUND:
ISOTROPIC COMPONENT

Since the gamma-ray emissivity from the dark-matter
annihilation is proportional to the density squared, ρ2

χ,
the CGB intensity (number per unit area, time, solid
angle, and energy range) toward the direction n̂ can be
generally expressed as

Iγ(n̂, Eγ) =
∫

dr δ2(r, n̂r)W ([1 + z]Eγ , r), (1)

where Eγ is the gamma-ray energy, z the redshift, r the
comoving distance, δ the overdensity at n̂r compared to
the universal average, and W is some function of gamma-
ray energy and r that is given below. Note that we label
time by r (or redshift z used interchangeably), and space
by r = n̂r. We first derive the concrete form of the
function W . The general formula for the intensity is given

by [16]

EγIγ(n̂, Eγ) =
c

H0

∫
dz

jγ([1 + z]Eγ , z, n̂r)
h(z)(1 + z)4

× e−τ([1+z]Eγ ,z), (2)

where jγ is the emissivity (i.e., energy of photons per unit
volume, time, energy range, and solid angle), h2(z) =
Ωm(1 + z)3 + ΩΛ + (1 − Ωm − ΩΛ)(1 + z)2, and we as-
sume the standard values for cosmological parameters,
H0 = 100 h km s−1 Mpc−1 with h = 0.71, Ωm = 0.27,
and ΩΛ = 0.73. By the exponential factor, we incorpo-
rate the effect of the gamma-ray absorption due to pair
creation with the diffuse extragalactic background light
in the infrared or optical bands [17]; this effect, how-
ever, is negligible when the gamma-ray energy is smaller
than 1 TeV, the situation considered in the present pa-
per. The annihilation rate per unit volume can be give
by (ρχ/mχ)2〈σv〉/2, where mχ is the mass of the dark-
matter particle, and 〈σv〉 represents the averaged quan-
tity of annihilation cross section times relative velocity.
Therefore the emissivity is given by

jγ(Eγ , z, n̂r) =
1
4π

Eγ
dNγ

dEγ

〈σv〉
2

[
ρχ(z, n̂r)

mχ

]2

, (3)

where dNγ/dEγ is the gamma-ray spectrum per anni-
hilation. Comparing Eq. (1) with Eqs. (2) and (3),
and recalling that dr = −cdz/H0h(z) and ρχ(z, n̂r) =
ρ̄χ(z)δ(z, n̂r) = Ωχρc(1+ z)3δ(z, n̂r), we obtain the con-
crete form of W as

W (Eγ , z) =
〈σv〉
8π

(
Ωχρc

mχ

)2

(1 + z)3
dNγ

dEγ
e−τ(Eγ ,z). (4)

By taking ensemble average, we obtain the isotropic
background component of the intensity, 〈Iγ(Eγ)〉; it is
equivalent to our evaluating 〈δ2(z)〉, to which we turn our
attention next. Using the expression for reduced part of
N -point correlation function of density fluctuation in the
context of a halo model derived in Ref. [18], the intensity
multiplier 〈δ2〉 is given by

〈δ2(z)〉 =
∫

dM
dn

dM
(M, z)

(
M

Ωmρc

)2 ∫
u2(r|M, z)dV,

(5)
where u(r|M, z) = Mρ(r|M, z) is the density profile di-
vided by the halo mass M , dn/dM the halo mass func-
tion for which we use expression given in Ref. [19].1 In
the mass function, we implement an assumed cutoff mass
scale of 106M", which may be determined by the validity

1 The expression (5) is identical to the 1-halo term I
(1)
11 of

Eq. (2.15a) in Ref. [18]. The second (2-halo) term I
(2)
12 disap-

pears, because we evaluate the quantity at one point and halos
are assumed to be exclusive, having stiff boundary.

3

of hierarchical clustering formalism, self-limitation due to
annihilation itself, or nuclear and star-formation activi-
ties. Varying it over a range between 104M! and 108M!
changes the value of intensity multiplier by a factor of 2
or less. The redshift dependence is involved in Eq. (5)
through the halo mass function and the density profile
whose concentration parameter evolves [20]. In order to
obtain the linear power spectrum that is necessary to
evaluate the halo mass function, we adopted the fitting
formula presented in Ref. [21]. The concentration param-
eter as a function of halo mass and redshift determines
how steeply dark matter distributes in a halo; we used a
fitting formula given in Ref. [22]. As the result of includ-
ing all these ingredients, the intensity multiplier can be
calculated with each adopted profile. In the case of the
Navvaro-Frenk-White (NFW) profile [23] (γ = 1, where
γ is defined by ρ ∝ r−γ for small radii), 〈δ2(0)〉 ∼ 7×104.
For steeper profiles such as one with γ = 1.5 proposed
in the other simulation [24], this value becomes greater
by about an order of magnitude than the case of the
NFW profile. More recent simulations suggest the value
of γ depends on radius and seems between 1 and 1.5 in
the inner region [25] (see also Ref. [26] for an analytic
approach). But we do not explicitly give the result for
these cases, because our goal is to discuss the anisotropy
and we believe it is not that sensitive to the assumed
profile. In addition, it is practically useful to adopt the
NFW profile, since many quantities appearing below are
analytically calculated. The arguments until this point is
the same as those already discussed by former works [6];
we refer the reader to these references for more details.

One also needs to specify the particle physics part in-
volved in the function W—its mass, averaged cross sec-
tion 〈σv〉, and gamma-ray spectrum per annihilation. We
assume that the dark-matter particle considered domi-
nates the observed relic density, i.e., Ωχ = 0.23. The
annihilation cross section is closely related to the relic
density, because it determines abundance of the survived
dark matter particles at decoupling epoch. In the case
of the supersymmetric neutralino, whose mass is con-
sidered to be around GeV–TeV, the canonical value of
the cross section is 〈σv〉 = 3 × 10−26 cm3 s−1 assumed
to be independent of relative velocity, but wide range
of parameter space is still allowed. The value of the
annihilation cross section, however, does not affect our
main thrust regarding the CGB anisotropy, although a
larger value is favored in order to make its contribu-
tion to the CGB more significant. The gamma-ray spec-
trum is not that essential for our main calculation, ei-
ther, and we use a simple parameterization, dNγ/dEγ &
(0.73/mχ)e−7.76Eγ/mχ/[(Eγ/mχ)1.5 + 0.00014]. We do
not explicitly show the CGB intensity from dark-matter
annihilation, since it has been extensively studied by
many researchers [6–8]. For the MeV dark matter, on
the other hand, the annihilation cross section required
from the observed relic density as well as the 511 keV
line intensity [27] would be 〈σv〉 = 3 × 10−26 cm3 s−1

[13] at the decoupling, the same as the case of the

neutralino. We assume that it is velocity independent
again; otherwise, the cross section would be too small
to give a significant contribution to the 511 keV line
as well as the CGB. As the emission mechanism, we
consider the internal bremsstrahlung χχ → e+e−γ and
dNγ/dEγ = α[ln(s′/m2

e) − 1][1 + (s′/s)2]/(πEγ), where
α = 1/137 is the fine structure constant, s = 4m2

χ, and
s′ = 4mχ(mχ − Eγ) [14]. The annihilating dark matter
with mχ & 20 MeV might be a dominant component of
the CGB flux in 1–20 MeV [9].

III. FORMULATION FOR THE COSMIC
GAMMA-RAY BACKGROUND ANISOTROPY

In this section, we develop a novel formalism to eval-
uate the CGB anisotropy (or equivalently angular power
spectrum) due to dark-matter annihilation. In the fol-
lowing arguments, we assume that the annihilating dark
matter is a dominant constituent of the CGB. Since this
assumption itself is a nontrivial question, we refer the
reader to the earlier works [6–9] for detailed discussions.

A. General setup

We expand the deviation of the intensity from its mean
value with the spherical harmonics,

δIγ(n̂) = Iγ(n̂) − 〈Iγ〉 = 〈Iγ〉
∑

lm

almYlm(n̂), (6)

where we defined the coefficient alm to be a dimensionless
quantity. By the orthonormal relation of Ylm(n̂), alm can
then be given by

〈Iγ〉alm =
∫

dn̂ δIγ(n̂)Y ∗
lm(n̂)

=
∫

dn̂

∫
dr f(r, n̂r)W (r)Y ∗

lm(n̂), (7)

where f = δ2 −〈δ2〉 and the energy index in the function
W is suppressed for simplicity. To clarify our formula-
tion, we here define the quantity f̃k as the Fourier trans-
formation of f(r), and its power spectrum Pf (k) by the
relation 〈f̃kf̃k′〉 = (2π)3δ(3)(k + k′)Pf (k), where δ(N)

represents the N -dimensional delta function. We note
that k is a comoving wavenumber, since it is a Fourier
variable corresponding to the comoving distance r. The
goal of the present paper is to evaluate the angular power
spectrum Cl ≡ 〈|alm|2〉, which is shown to be given by

〈Iγ〉2Cl =
∫

dr

r2
{W ([1 + z]Eγ , r)}2 Pf

(
k =

l

r
; r

)
,

(8)
where the detailed derivation is summarized in Ap-
pendix A. Given this relation (8), we first focus on deriv-
ing the three-dimensional (3D) power spectrum Pf (k),
and then turn to the angular power spectrum.

f = δ2 − 〈δ2〉

Gamma-ray intensity:

Spherical harmonic expansion:

Limber’s equation:
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What are backgrounds?

•Galactic cosmic rays — a 
foreground

•It strongly depends on the 
galactic latitude

•The flux is about one order of 
magnitude smaller than CGB 
for |b| > 20 deg, safely 
negligible
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Fig. 4.— γ-ray spectrum of conventional model (44-500180) for the sky regions described in Table 2: top row H–A–B, middle row
C–D–E, bottom F. The model components are: π0-decay (dots, red), IC (dashes, green), bremsstrahlung (dash-dot, cyan), EGRB (thin
solid, black), total (thick solid, blue). EGRET data: red vertical bars. COMPTEL data: green vertical bars. NB EGRB is added to the
total prediction for the EGRET energy range only.

low 100 MeV and above 1 GeV. Also IC dominates at
latitudes |b| > 10◦ at all energies.

Longitude profiles at low latitudes are shown in Fig. 9.
The agreement with the EGRET data is generally good
considering that the model does not attempt to include
details of Galactic structure (e.g., spiral arms), and the
systematic deviations reflect the lack of an exact fit to
the spectra in Fig. 8. The largest deviation (∼20%) is at
2–4 GeV, but this is still compatible with the systematic
errors of the EGRET data. Latitude profiles in the lon-
gitude ranges 330◦ < l < 30◦, 30◦ < l < 330◦ are shown
in Figs. 10, 11, where the logarithmic scale is chosen
given the large dynamic range and to facilitate the com-

parison at high Galactic latitudes. The agreement with
EGRET is again good, in particular the reproduction of
the high-latitude variation confirms the importance of
the IC component which is much broader than the gas-
related π0-decay and bremsstrahlung emission. In the
inner Galaxy (Fig. 10) there is evidence for an excess
at intermediate latitudes, perhaps related to an underes-
timate of the interstellar radiation field in the Galactic
halo, or special conditions in the Gould’s Belt. The outer
Galaxy latitude profiles (Fig. 11) are in excellent agree-
ment with the data.

The χ2 values (Table 3) confirm the visual conclusion
of the improvement of this model over the conventional
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Fig. 4.— γ-ray spectrum of conventional model (44-500180) for the sky regions described in Table 2: top row H–A–B, middle row
C–D–E, bottom F. The model components are: π0-decay (dots, red), IC (dashes, green), bremsstrahlung (dash-dot, cyan), EGRB (thin
solid, black), total (thick solid, blue). EGRET data: red vertical bars. COMPTEL data: green vertical bars. NB EGRB is added to the
total prediction for the EGRET energy range only.

low 100 MeV and above 1 GeV. Also IC dominates at
latitudes |b| > 10◦ at all energies.

Longitude profiles at low latitudes are shown in Fig. 9.
The agreement with the EGRET data is generally good
considering that the model does not attempt to include
details of Galactic structure (e.g., spiral arms), and the
systematic deviations reflect the lack of an exact fit to
the spectra in Fig. 8. The largest deviation (∼20%) is at
2–4 GeV, but this is still compatible with the systematic
errors of the EGRET data. Latitude profiles in the lon-
gitude ranges 330◦ < l < 30◦, 30◦ < l < 330◦ are shown
in Figs. 10, 11, where the logarithmic scale is chosen
given the large dynamic range and to facilitate the com-

parison at high Galactic latitudes. The agreement with
EGRET is again good, in particular the reproduction of
the high-latitude variation confirms the importance of
the IC component which is much broader than the gas-
related π0-decay and bremsstrahlung emission. In the
inner Galaxy (Fig. 10) there is evidence for an excess
at intermediate latitudes, perhaps related to an underes-
timate of the interstellar radiation field in the Galactic
halo, or special conditions in the Gould’s Belt. The outer
Galaxy latitude profiles (Fig. 11) are in excellent agree-
ment with the data.

The χ2 values (Table 3) confirm the visual conclusion
of the improvement of this model over the conventional
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Host-halo dominated case


