大質量星の超新星爆発: ガンマ線バーストと金属欠乏星

Submitted to ApJ Letter

Collaborators: 前田啓一, 梅田秀之, 野本憲一, 田中雅臣(東大), 岩本信之(JAEA), P. A. Mazzali(MPA)

Gamma-ray bursts (GRBs)

Discovered in 1970's. Gamma-ray (~100keV) is emitted instantly.

Long GRBs with HNe

GRB 060505 & GRB 060614

Della Valle et al. 2006, Gal-Yam et al. 2006, Fynbo et al. 2006, Gehrels et al. 2006

Why the SNe were not detected?

Chance superposition?

Schaefer & Xiao 2006, Cobb et al. 2006

GRB060505

GRB060614

Cobb et al. 2006 We examine the galaxy distribution of the field of GRB 060614 and find that the probability of a chance association with a galaxy at least as bright as the putative host is only $\sim 0.5-1.9\%$. However, for the current ensemble of ≈ 180 Swift GRBs it is likely that several such coincidences

z~0.1-0.2

but....

Gehrels et al. 2006 We find the suggestion^{18,19} of a chance alignment between a background GRB and foreground galaxy at z=0.125 to not be credible; the chance probability of the observed 0.5" offset between the GRB and the z=0.125 galaxy to be by chance is only $2x10^{-5}$. Also, fits to the combined UVOT and XRT spectra give z<1.3 at the 99.99% confidence level excluding the suggested¹⁸ location at z>1.4.

Possibilities: chance superposition

Galaxy counts $\rightarrow 1\%$

Short GRBs with long tails?

Long GRBs with Faint SNe?

Faint SNe are Type II SNe.

(Detected by bright plateau.)

SN 1994W (Sollerman et al. 1998)

 $M(^{56}Ni) < 2.6 \times 10^{-3}M_{\odot}$

SN 1997D (Turrato et al. 1998)

10⁻³*M*_☉ <*M*(⁵⁶Ni)<10⁻²*M*_☉

The explosion energies are small ($E < 10^{51}$ ergs).

Can small *M*(⁵⁶Ni) be compatible with the formation of energetic GRBs?

Jet-induced explosion

Jet **Relativistic jets** Jet induced **Nucleosynthesis** BH/NS BH 0.00 sec cf. Collapsar model (MacFadyen, Woosley, & Heger 2001) NO E_{dep}-Energy deposition rate (Rotation etc.)

0.05

0.05

Same mass and explosion energy 15x10⁵¹erg $40 M_{\odot}$

Jet parameters

 \dot{E}_{dep} : Energy deposition rate

Progenitor: Z=0, $M_{MS}=40M_{\odot}$ Total deposited enegy: $E_{dep} = 1.5 \times 10^{52} erg$ Initial remnant mass: $M_{\rm rem} = 1.4 M_{\odot}$ Initial opening angle: $\theta_{iet} = 15^{\circ}$ Ratio of thermal to total deposited energies:

Initiation of the jet injection

 P_{fall}

ho, V_{fall}

Sites of ⁵⁶Ni production

Explosive nucleosynthesis (e.g. Maeda & Nomoto 2003)

ΒH

Shock

Jet

 $M_{\rm jet} \sim E_{\rm dep} / c^2 / \Gamma_{\rm max}$ ~10⁻⁴ M_{\odot}

$$(E_{dep} = 1.5 \times 10^{52} ergs, \Gamma_{max} = 100)$$

Ejected ⁵⁶Ni masses

Other elements

Smaller \dot{E}_{dep} Smaller $M(^{56}Ni)$ Larger [C/Fe]

Nucleosynthesis in a single SN Metal-poor stars

Metal-poor stars

These stars reflect nucleosynthesis in a single Pop III SN.

CEMP stars (Depagne et al. 2002) M(⁵⁶Ni)~8x10⁻⁴M_☉

EMP stars (Cayrel et al. 2004) M(⁵⁶Ni)~0.2M_☉

HMP stars

(Christlieb et al. 2002) (Frebel et al. 2005) $M(^{56}Ni)\sim 3x10^{-6}M_{\odot}$

Counts

5 nearby GRBs 3 GRB-HNe 2 no-SN GRBs (excluding XRF060218)

For [Fe/H]<-3.5 13 metal-poor stars 7 EMP stars 4 CEMP stars 2 HMP stars

BH-forming SNe with relativistic jets

No-SN GRBs are also massive stellar deaths. BH-forming SNe with relativistic jets are responsible for GRBs-HNe and no-SN GRBs and metal-poor stars.