AGN研究の進展

梅村 雅之

筑波大学 計算科学研究セン

理論天文学懇談会シンポジウム2006(立教大学)

30年来のパラダイム

BLR: Broad Line Regions, NLR: Narrow Line Regions

Part 1 超巨大ブラックホール形成

Rees Diagram (1984)

Supermassive Star?

or

Cluster ?

massive black hole

Figure 1 Schematic diagram [reproduced from Rees (106)] showing possible routes for runaway evolution in active galactic nuclei.

Seed BHs

Pop III Stars

Heger & Woosley 2002, ApJ, 567, 532

Supermassive Star

General Relativistic Instability

Rapidly rotating supermassive star in equilibrium

- rigid rotation
- mass-shedding limit
- unstable at $R < 640 GM / c^2$

Baumgarte & Shapiro 1999, ApJ, 526, 941

FIG. 2.—Mass vs. central density plot for relativistic, rotating n = 3polytropes. The long-dashed curve is the Tolman-Oppenheimer-Volkoff (TOV) solution for nonrotating, static configurations, and the shortdashed curve marks the mass-shedding limit. The thin solid lines denote sequences of constant angular momentum, ranging from J = 15 (lowest curve) to $\bar{J} = 24$ (highest curve) in increments of $\Delta \bar{J} = 1$. Turning points of these curves mark the onset of instability. The thick solid line connects these turning points (see also Fig. 3) and hence separates a region of stable configurations (above this line) from a region of unstable configurations (below this line). In particular, all nonrotating n = 3 polytropes are unstable to radial perturbations. A configuration evolving along the massshedding sequence with increasing central density becomes unstable at the critical point A. All sequences of constant angular momentum connect the mass-shedding limit with point B for $\rho_c \rightarrow 0$ (and hence $R \rightarrow \infty$). The mass of this configuration should agree with the mass M = 4.5525 of a Newtonian n = 3 polytrope (eq. [26]; open circle). The deviation of the solid point B from the analytical value is a measure of our numerical accuracy.

Dynamical Collapse (Post Newtonian)

600 Saijyo, Shibata, Baumgarte, & Shapiro (b) (a) 40400 (2001, ApJ, 548, 919) 20200 y/M₀ 0 **Differentially rotating SMS** \Rightarrow bar instability -200-20-400-40-600 -600-400-200 0 200 400 600 -20 -402040Saijyo, Baumgarte, Shapiro & Shibata 0 40(2002, ApJ, 569, 349) (d) 30(c) 202010**Rigid rotating SMS** y/M_0 0 0 \Rightarrow collapse -10-20-20-30 -40-30 -20 -10 0 10 20 30 -2020 40-40x/M₀ x / M_0

FIG. 14.— Density contours ρ_* in the equatorial plane at selected times during rotating SMS collapse. Snapshots are plotted at $(t/t_{\rm L} d) = (a) (5.0628 \times 10^{-4}, 8.254 \times 10^{-9}, 10^{-7})$, (b) $(2.50259, 1.225 \times 10^{-4}, 10^{-5})$, (c) $(2.05360, 8.328 \times 10^{-3}, 5.585 \times 10^{-7})$, (d) $(2.50360, 8.328 \times 10^{-3}, 5.585 \times 10^{-7})$, (d) $(2.50360, 8.328 \times 10^{-3}, 5.585 \times 10^{-7})$, (e) $(2.50360, 8.328 \times 10^{-3}, 5.585 \times 10^{-7})$, (f) $(2.50360, 8.328 \times 10^{-3}, 5.585 \times 10^{-7})$, (g) $(2.50360, 8.328 \times 10^{-7})$, (g) (2.50360, 8.32

Dynamical Collapse (Full General Relativity)

Shibata & Shapiro 2002, ApJ, 572, L39

Dnamical collapse \Rightarrow **Apparent Horizon**

Kerr parameter 🕭 0.75 (Kerr BH)

Fig. 1.— Snapshots of density contour lines and velocity vectors in the x-z plane at selected time slices. The contour lines are drawn for $\rho/\rho_{max} = 10^{-0.4j}$ $(j = 0 \sim 15)$, where ρ_{max} denotes the maximum density. The fourth figure is the magnification of the third one: The thick solid curve at $r \approx 0.3M$ denotes the location of the apparent horizon.

Mechanisms due to N-Body Process

Dynamical Friction (Makino 2002)

$$t_{\rm fric}$$
; $\frac{1.17}{\log \Lambda} \frac{r^2 v_c}{Gm} = 6 \times 10^8 \,{\rm yr} \left(\frac{r}{\rm kpc}\right)^2 \left(\frac{v_c}{100 {\rm km \ s^{-1}}}\right) \left(\frac{m}{5 \times 10^6 M_{\odot}}\right)^{-1}$

(1) Dynamical Friction effective at $M_{\rm BH} < M_*$

$$\rho_* \propto r^{-2} \quad (M_* \propto r)$$
$$M_* = 10^6 M_{\odot} \left(\frac{r}{0.1 \text{pc}}\right) \left(\frac{M_{\text{gal}}}{10^{10} M_{\odot}}\right) \left(\frac{R_{\text{gal}}}{1 \text{kpc}}\right)$$

(2) Gravitational wave

$$t_{GW}$$
; $\frac{r}{c} \left(\frac{r}{r_g}\right)^3 = 2 \times 10^{18} \,\mathrm{yr} \left(\frac{r}{0.1 \mathrm{pc}}\right)^4 \left(\frac{M_{\mathrm{BH}}}{10^6 M_{\odot}}\right)^{-3}$

(3) Loss-cone depletion by slingshot

Loss-cone Depletion in Binary

Begelman, Blandford, Rees, 1980, Nature, 287, 307

ejection by slingshot

Loss-cone Depletion in MBH Binary

Makino & Funato, 2004, ApJ, 602, 93

MBH binaryは, slingshotによるhardening では, Hubble time 内に重力波放出の軌道まで縮まらない

Fig. 8.—Distribution of particles in the (E, J) plane at times T = 10, 20, 40 and 80 (top left to bottom right). The number of particles is 10⁶.

MBH Triplet

Iwasawa, Funato, & Makino, 2006, ApJ, 651, 1059

Eccentricity の大きいBH binaryは, single BH との 3体相互作用で重力波放出の軌道まで縮まる

High eccentricity BH binary形成

強3体相互作用による eccentricity thermalization

Kozai メカニズムによる経年的変化

← 多〈のMBHは,binaryとして残る

超巨大BH - 銀河バルジ関係

 $M_{\rm BH}$ / $M_{\rm bulge} \approx 0.001$

Kormendy & Richstone 1995 Magorrian et al. 1998 Merritt & Ferrarese 2001 Marconi & Hunt 2003

Marconi & Hunt 2003, ApJ, 589, 21

$M_{\rm BH}$ - σ Relation $M_{\rm BH} \approx 10^8 M_{\odot} \left(\frac{\sigma}{200 \, {\rm km/s}} \right)^4$ σ : バルジの速度分散 10^{9} $\left({\overset{\otimes}{}_{M}} \right)^{\bullet}_{M}$ 10^{γ} 106 70 80 90100 200 300 400 60 dispersion (km s⁻¹)

Tremaine et al. 2002, ApJ, 574, 740

Laor 2001, ApJ, 553, 677

Direct Capture of Stars

Adams et al. 2003, ApJ, 591, 125

stellar density

$$\rho = \frac{{\sigma_V}^2}{4\pi G r^2}, \ M(r) = \frac{{\sigma_V}^2}{G} r$$
$$r_p = \frac{j^2}{2GM_{\rm BH}} = \frac{(GM_{\rm BH})^3 \Omega^2}{2{\sigma_V}^4}$$

spin parameter $\lambda = \frac{J \left| E \right|^{1/2}}{GM^{5/2}} = 0.035$

direct capture

$$r_{\rho} < 4r_{S}$$

$$\Rightarrow M_{BH} = \frac{4\sigma_V^4}{Gc\Omega} \approx 10^8 M_{\odot} \left(\frac{\sigma_V}{200 \text{ km/s}}\right)^4$$

Tidal Disruption & Capture of Star by SMBH

Tidal disruption radius

$$\frac{GM_{BH}M_{\odot}}{r_{disr}^{3}} = \frac{GM_{\odot}}{R_{\odot}^{2}} \implies r_{disr} = R_{\odot} \left(\frac{M_{BH}}{M_{\odot}}\right)^{1/3}$$

Direct capture

$$J \leq \frac{4GM_{BH}}{c}$$

$$r_{disr} < r_{S} \implies r_{disr} = \left(\frac{M_{BH}}{10^{8}M_{\odot}}\right)^{-2/3} r_{S}$$

10⁸M_☉以上のBHでは,星は潮汐破壊の前にBH horizonに吸い込まれる ← 輻射を出さない(AGNにならない)

QSO Luminosity Functionからの制限

Integration of QSO LF $Ω_{\rm BH}(QSO) \approx 1.8 \times 10^{-6}$ Yu & Tremaine 2002, MNRAS, 335, 965 $Ω_{\rm BH}(QSO) \approx (2.4 - 4.8) \times 10^{-6}$ Marconi et al. 2004, MNRAS, 351, 169

SMBH-bulge mass relation at z=0

 $\Omega_{\rm BH}$ (bulge) $\approx 2.1 \times 10^{-6}$

↓ QSO BHの最終フェーズはガスアクリーションで太った

Relativistic Radiation Hydrodynamics

SMBH Formation by Radiation Drag in Bulge

$$\frac{M_{\rm BH}}{M_{\rm bulge}}; \ 0.14\varepsilon = 0.001$$

 $\varepsilon = 0.007$: Hydrogen burning energy conversion efficiency

$$(e_{\rm rad} = l_* t_*; 0.14 \varepsilon \cdot m_* c^2)$$

Why small BHs in disks?

Kawakatu & Umemura 2004, ApJL, 601, L21

AGN Feedback Regulation

Silk & Rees 1998, A&A, 331, L1

gas density

$$\rho = f_{gas} \frac{\sigma^2}{2\pi G r^2}, \ M(r) = f_{gas} \frac{2\sigma^2}{G} r$$

velocity of expanding shell driven by AGN

$$V_{s} = \left(\frac{8\pi^{2}Gf_{w}L_{E}}{f_{gas}\sigma^{2}}\right)^{1/3}$$

feedback condition

$$V_{s} > \sigma \ (=\sqrt{2}\sigma_{V})$$
$$\Rightarrow M_{BH} = \frac{\sigma^{5}\kappa}{G^{2}c} \approx 10^{8} M_{\odot} \left(\frac{\sigma_{V}}{200 \text{ km/s}}\right)^{5}$$

Downsizing

<u>SMBH</u> 大きなBHほど先にできた

Ueda et al. 2003, ApJ, 598, 886 Hasinger et al. 2003, astro-ph/0302574 Marconi et al. 2004, MNRAS, 351, 169 Merloni, 2004, MNRAS, 353, 1035

<u>Galaxies</u> 大きな銀河ほど先に生まれた

Cowie et al. 1996, AJ, 112, 839 Kauffmann et al. 2003, MNRAS, 341 54 Kodama et al. 2004, MNRAS, 350, 1005 Glazebrook et al. 2004, Nature, 430, 181

"Downsizing" in SMBH Formation

More massive BHs formed at higher redshifts. Ueda et al. 2003, ApJ, 598, 886; Ueda et al. 2006

超巨大ブラックホールのダウンサイジング

+

SMBH-bulge 関係

重いバルジほど昔星形成を終了した

早期型銀河は早期に出来た

銀河と超巨大BHの共進化

Seed BH

SN/GRB remnant (Pop III remnant) (1-10 $^{3}M_{\odot}$) Supermassive star (10⁴⁻⁵ M_{\odot})

ガス降着(Super/Sub-Eddington) 合体成長 $t \approx 10^8$ yr

ガス降着 $t \approx 10^{7-9} \, \text{yr}$

銀河との共進化

銀河スケールからサブパーセックへのアクリーション

Part 2 降着円盤&ジェット

Accretion & Jet

<u>α-Prescription</u>

viscosity coefficient $v = \alpha C_s^2 \Omega^{-1}$

角運動量輸送

$$\frac{dJ}{dt} = -\frac{d}{dr} \left(\frac{\alpha C_s^2}{\Omega} r \frac{dV_{\varphi}}{dr} \right) \quad (= -\frac{\alpha C_s^2}{2} \text{ for Kepler})$$

分子粘性: α≈10⁻¹⁰ 乱流粘性(K-H shear 不安定): α≈10⁻⁴ 磁気粘性: α≈10⁻² 1

Accretion Flows

Abramowicz et al. 1995

Accretion Flows

$$L = \eta \mathcal{M}_{E} \mathcal{O}^{2}, \quad \mathcal{M}_{E} = 10 L_{E} / c^{2} = 10 \cdot \frac{4\pi G cm_{\rho} M}{\sigma_{\tau} c^{2}}$$

Sub-Eddington: ADAF(Advection-Dominated Accretion Flow) RIAF (Radiatively Inefficient Accretion Flow) high energy photons (strong X-ray)

$$n = \frac{n}{n} = 1 \implies \eta \approx 0.1 n$$

Eddington: Standard Disk

_ **O**_

0

low energy photons

$$\eta = \frac{\eta}{\eta} \approx 1 \implies \eta \approx 0.1$$

Super-Eddington: Slim Disk (Photon trapping)

lower energy photons

$$\eta \approx 0.1 \, \text{m}^{-1/2}$$

MRI (Magneto-Rotational Instability)

(Velinhov 1959, Chandrasekhar 1961, Balbus & Hawley 1991)

Magnetic Viscosity

Matsumoto & Tajima 1995, ApJ, 445, 767

MHD Simulation of ADAF

Machida, Nakamura, Matsumoto, 2004, PASJ, 56, 671

光学的に薄いaccretion flow の global structure についてMHD計算

<15rg で, optically-thin hot disk を形成 || ADAF解に一致

Magnetic-Tower Jet

Lynden-Bell, 1996, MNRAS, 279, 389 Kato, Mineshige, Shibata, 2004, ApJ, 605, 307

MRI 強いトロイダル磁場形成と浮上 磁気タワー形成 磁気圧によりジェット加速(≈0.5c)

Y. Kato et al. 2004

<u>GR-MHD</u>

Koide, Shibata, Kudoh, 1999, ApJ, 522, 727 (Schwartzshild) Koide, 2004, ApJ, 606, L45 (Kerr)

Accretion Flow around Kerr BH

De Villiers et al. 2003, ApJ, 599, 1238

MHD Jet around Kerr BH

Hawley & Krolik 2006, ApJ, 641, 103

BH spin によってToroidal 磁場が生成 外向きのPoynting flux funnel wall に沿ってout-flowを生成 ~0.4 - 0.6 c

BH spin が上がるとoutflow増大

Fig. 2.—Ratio of the azimuthally averaged gas to magnetic pressure β at t = 560M, 640M, and 720M in KDPg. The color contours are in a logarithmic scale: dark red is gas pressure-dominated ($\beta = 10^{11}$) and dark blue is magnetic field-dominated ($\beta = 0.001$).

Supercritical Accretion

●高赤方偏移クェーサーからの要請 (Haiman 2004, astro-ph/0403225) SDSS QSO z=6.4, $M_{\rm BH} \approx 10^9 {\rm M}_{\odot}$ t_{growth} ; $7 \times 10^8 \eta_{0.1}$ yr $t_{\rm H}$; 9 × 10⁸ yr at Z=6 $\Rightarrow \hbar = \frac{\hbar }{\hbar } > 1$ • Narrow Line Sy 1 & Narrow Line QSOs (Kawaguchi et al. 2004, A&A, 420, 23L) <10⁸ M_ののBH成長は, Super-Eddington

Slim Disk Model for NLS1

Mineshige et al. 2000, PASJ, 52, 499

6.56 log T_{efr}(K) **Multi-color spectra** 5.5 5 NLS1の観測は 4.5 12 10 13 11 14 /2 < 10 $\log r$ (cm) で説明できる 10^{3} A 10^{2} A 10¹A $1 \mu m$ 44 log vf., 42 40 -30 1 $\log h\nu$ (keV)

Photon Trapping in Supercritical Accretion

mass accretion:
$$t_{acc} = r / v_r, \quad N = 2\pi r v_r \Sigma$$

photon diffusion: $t_{diff} = h/(c/3\tau), \quad \tau = \sigma_{\tau} \Sigma / 2m_{\rho}$

photon trapping condition: $t_{acc} < t_{diff}$

$$\left(\frac{h^{*}}{h^{*}_{E}}\right) > 2\left(\frac{r}{3r_{s}}\right)\left(\frac{h}{r}\right)^{-1}$$

Supercritical accretion では, photon trapping が起こる Outflow \Rightarrow BH accretion rate はどこまで上がれるか

<u>Accretion Disk & Jet</u> <u>課題</u>

- •磁気粘性ディスクとスペクトル
- •磁場の回転と, BHスピンで, どの程度の angular momentum と mass がoutflowで運ばれるか
- BH mass accretion rate は, どこまで大きくなれるか

 \bigcup

RMHD (Radiation Magneto-Hydrodynamics)が必要

Part 3 遮蔽とAGNタイプ

AGN-Starburst Connection

Circumnuclear Starburst (数10pc-1kpc) は2型に多い Nuclear Starburst (1-10pc) は1型,2型にあまりよらない (Hidden Starburst)

単純なトーラスモデルでは説明がつかない!

Starburst Rings

NGC1300

Barred Spiral Galaxy NGC 1300

NGC6782

Galaxy NGC 6782

<u>NGC1300</u>

Yen et al 2006

OILR=8.62kpc $\Omega_p = 4.1 \ km/s \cdot kpc$

Double Ring Feature

Yen et al 2006

OLR & OILR

Turbulent-Supported Obscuring Torus

Wada & Norman, 2002, ApJ, 566, L21

SN feedback による遮蔽トーラス形成と乱流粘性発生

Fig. 3.—Time evolution of the gas mass inside R < 1 pc for two models (with and without energy footback). Solid line represents the mass accretion rate 0.3 M_{\odot} pc⁻¹.

Obscuring Wall Model

Ohsuga & MU, 2001, ApJ, 559, 157

スターバーストの輻射圧で形成される Stable Gas Wall AGNが明るくなると平衡解はなくなる(QSO)

Radiation-Pressure Driven Obscuring Clouds

Watabe & MU, 2005, ApJ, 618, 649

- ●スターバーストとAGN遮蔽,AGN活動の関係は?
- 観測
 可視光 A_V~1-10
 X線 A_V~100
 遮蔽は一元論でよいか
- ブラックホール降着とどのように関係しているか

Conclusions

超巨大ブラックホール

key physics はかなりわかってきた 銀河スケールからサブパーセックまでつながったわけではない

降着円盤&ジェット

磁気粘性降着円盤のモデルが確立しつつある 輻射の役割はまだ十分にわかっていない

遮蔽&AGNタイプ

単純なトーラスモデルは行き詰まっている(?) スターバーストとの関係 ブラックホールへの降着との関係

END