星形成過程でのジェットと アウトフローの駆動メカニズム

町田正博, 犬塚修一郎 (京都大学), 松本倫明 (法政大学)

原始星からのアウトフロー、ジェット

- ◆星形成領域でタイプの異なる2種類のフロー(アウトフロー、ジェット)が観測
- ◆現在までに400以上のフロー 星形成過程で普遍的な現象
 - > アウト フロー: 低速 (~10 km/s), ~~10⁵ AU, Wide opening angle) > アウトフロー: 低速 (~10 km/s), ~~10⁵ AU, Wide opening angle)
 - $\rightarrow \overline{\mathcal{S}_{zyh}}$ 高速 (~100 km/s), ~10⁵ AU, Well-collimated structure
- ◆ アウトフロー、ジェット問題と解決へのアプローチ
 - ▶ どのようなメカニズムで駆動するのか? 特徴(速度、opening angle)の違いは?
 - ▶ 直接観測は難しい:ドライバーはsmall scale, 濃い分子雲コアに埋まっている
 - ▶ 数値計算が必要 空間7桁、密度20桁の違い(原始星とアウトフロー、ジェット)
 - ▶ 駆動メカニズムに関する仮説
 - **1**. アウトフローは、ジェットに引きすられて駆動 (entrainment)

大多数が支持、原始星周りの計算、仮定が多い(磁場の形、降着率、円盤、etc..)

- 2. アウトフローとジェットは、各々異なるコアから駆動する (first core, protostar)
- > この研究では、
 - 磁場の散逸を考慮して、分子雲コア(~10⁴ AU, 10⁴ cm⁻³)から原始星(~0.001 AU, 10²² cm⁻³)
 形成を直接計算して、フローの駆動メカニズムを調べた

計算手法

3D Resistive MHD Nested Grid

解像度が必要な部分を精度の良いグリッドで覆う
ジーンズ条件を満たすように、新しいグリッドを生成

Grid size: 64 x 64 x 32

(z=0 mirror symmetry)

Grid level: L_{max}=31 (L: Grid Level)
Total grid number: 64 x 64 x 32 x 31
Scale range: L=10⁴ AU - 0.01R_{sun}, n=10⁴ cm⁻³ - 10²² cm⁻³

▶空間:~10桁

▶密度コントラスト:~20桁

Example of Nested Grid

▶L=31の解像度で全体を覆ったとすると:70億×70億×35億メッシュ(64*2^30)に相当

Initial Condition 静水圧平衡にあるガス球

- □ Critical Bonner-Ebert Sphere
 + 回転 + 磁場 + 微小の密度揺らぎ
- □ 磁力線は、回転軸に平行: B//Ω
- Parameters: 磁場 (α) と回転(ω)の度合い
- ➤ =B_c²/(4πρc_s²):磁気圧とガス圧の比
- ω=Ω/(4πGρ)^{1/2}:角速度(自由落下時間で規格化)
- 初期値 ・数密度:n=10⁴ cm⁻⁴ ・温度: T=10 K ・ガス球の大きさ:4.6x10⁴ AU ・質量14 Msun

基礎方程式(Resistive MHD eq.)

$$\begin{split} &\frac{\partial\rho}{\partial t} + \nabla\cdot(\rho v) = 0,\\ &\rho\frac{\partial v}{\partial t} + \rho(v\cdot\nabla)v = -\nabla P - \frac{1}{4\pi}B\times(\nabla\times B) - \rho\nabla\phi\\ &\frac{\partial B}{\partial t} = \nabla\times(v\times B) + \eta\nabla^2B,\\ &\nabla^2\phi = 4\pi G\rho, \end{split}$$

>ポリトロープ近似: P=P(ρ) 1次元radiative hydro calculationの結果から近似 (Masunaga & Inutsuka 2002)

>Resistivity (η): 温度と密度の関数としてモデル化 η = η (ρ, t)

(Nakano et al. 2002, Machida et al. 2006)

Result 3: Ohmic Dissipationによる磁場の散逸

Result 4: 原始星からのジェット

原始星の周りのジェットの進化

> This animation start before the protostar is formed at $n \sim 10^{19}$ cm⁻³

Model for (α, ω)=1, 0.3

Result 5: ジェットとアウトフローの進化

ジェットは回転軸に沿って広がる,コリメーションは時間と共に良くなる

Well-collimated structure

Vertical/Radial ~ const

計算結果と速度差

各々のフローの特徴:アウトフローとジェットの特徴を自然に再現出来た!!

	Driver	Speed	collimation	Mechanism	Configuration of B
Outflow	First core	Slow (5 km/s 50 km/s)		Magneto- centrifugal	Hourglass
Jet	Second core (protostar)	High (50 km/s 500 km/s)		Magnetic pressure	Straight

▶アウトフロー、ジェットの速度の違いは、第1コアと原始星のKepler Speed(重力ポテンシャル)の違い

✓ First core: ~0.01 M_{sun} , 1 AU, Protostar: ~0.01 M_{sun} , ~1 R_{sun}

▶各々のコアが1 M_{sun}まで増加したとき、アウトフローとジェットの速度は、10倍増加 (v_{kepler} M^{1/2})

✓Outflow: ~5 km/s (0.01 Msun) ~50 km/s (1 M_{sun})

✓ Jet: ~50 km/s (0.01 Msun) ~500 km/s (1 M_{sun}) まとめ

アウトフローは、jetによってentrainmentされるのではなく、 ファーストコアによって駆動する

▶アウトフローとジェットの特性の違いは、周辺の磁場の強さ、 磁力線の形状、重力ポテンシャルの違いから (or 磁気散逸を経験したかどうか)

