<u>Torsional Oscillations of Relativistic Stars</u> <u>with Dipole Magnetic Fields</u>

Hajime Sotani (University of Thessaloniki)

with

K. D. Kokkotas (University of Thessaloniki)N. Stergioulas (University of Thessaloniki)M. Vavoulidis (University of Thessaloniki)

QPOs in SGRs

105

104

 10^{3}

100

Counts [1/s]

Ref : Watts & Strohmayer (2006)

200 Time [s] **P()s**

SGRs

- The most promising model : magnetar (Duncan & Thompson 1992)
- \rightarrow the magnetic stress in the solid crust
- \rightarrow the gamma-ray burst
- Giant flares in SGRs
 - Up to now, three giant flares have been detected.
 - SGR 0526–66 in 1979, SGR 1900+14 in 1998, SGR 1086–20 in 2004
 - Peak luminosities : $10^{44} 10^{46}$ erg/s
 - A decaying tail for several hundred seconds follows the flare.
- QPOs in decaying tail (Israel et al. 2005; Watts & Strohmayer 2005, 2006)
 - SGR 1900+14 : 28, 54, 84, and 155 Hz
 - SGR 1086–20 : 18, 26, 29, 92.5, 150, 626.5, and 1837 Hz (possible additional frequencies : 720 and 2384 Hz)

How to explain QPOs

- QPOs is due to the torsional oscillation in crust ??
 - In Newtonian; Hansen & Cioffi (1980), McDermott *et al.* (1998), Carroll *et al.* (1986), Storhmayer (1991), ...
 - In GR; Schumaker & Thone (1983), Leins (1994), Messions *et al.* (2001), Samuelsson & Andersson (2006)
 - \rightarrow without magnetic field or non-realistic one !!
- QPOs can be explained by global Alfven modes ??
 - Glampedakis *et al.* (2006)
 - simple toy model \rightarrow the possibility to explain the observational data !!

Observational frequencies

- With dipole magnetic field & realistic EOS
 - Crust torsional modes
 - Global Alfven modes

Models of Magnetar

- Ideal MHD approximation
 - \rightarrow electric field is zero for comoving observer.
- Neglect the deformation due to the magnetic tension
 - Magnetic energy / gravitational energy ~ 10^{-4} (B/10¹⁶[G])
 - Equilibrium configuratin : static and spherically symmetric one.
- Axisymmetric poloidal magnetic field
- In the crust : isotropic shear modulus μ
 - \rightarrow Shear modulus depends on the EOS of crust.

<u>EOS</u>

Inner core : four EOS such as A, WFF3, APR, and L

• EOS A is a very soft and EOS L is a very stiff.

• <u>Crust</u> : two EOS such as NV and DH

NV : Negele & Vautherin (1973) ~ 2.4 x 10¹⁴ [g/cc] at the basis of crust µ ~ 1.267 x 10³⁰ 14^{4/5} [erg/cc]
DH : Douchin & Haensel (2001) ~ 1.28 x 10¹⁴ [g/cc] at the basis of crust µ ~ 1.74 x 10³⁰ 14^{3/4} (Z/53)² (616/A)^{4/3}

x $((1-Xn)/0.41)^{4/3}$ [erg/cc]

Perturbations

- Linearized the equation of motion and Maxwell's equations
 - Axisymmetric axial perturbation
 - Cowling approximation ($\delta g_{\mu\nu} = 0$)
- Perturbation equation to be solved
 - \rightarrow eigenvalue equation of 1-dimensional form !

$$\ell(\ell+1)\mathcal{A}_{\ell} + \mathcal{L}_{1}^{\pm 2}\mathcal{B}_{\ell} + \mathcal{L}_{2}^{\pm 2}\mathcal{C}_{\ell} = 0$$

 \rightarrow the ℓ -th order perturbation is coupled with the ($\ell \pm 2$)-th order.

For simplicity, we neglect these coupling.

 \rightarrow We need to consider the case including coupling terms later...

Boundary Conditions

For pure crust torsional modes;

- Zero traction condition at basis of crust and at stellar surface.
 - \rightarrow at basis of crust, it is not true boundary condition with magnetic field !
 - \rightarrow in the limit of non-magnetic field, it is correct one.
 - \rightarrow thus for weak magnetic field this B.C. is not so bad.
- For global Alfven modes;
 - Regularity condition at stellar center
 - Zero traction condition at stellar surface
 - Traction is continuous at basis of crust

Pure Crust Torsional Modes

Non-magnetized case

- For fundamental modes
 - Frequencies depend on the stellar parameters.
 → it can vary by up to 30 ~ 50 %
 - The choice of the crust EOS does not affect significantly (1~5%)
- For overtones

- Frequencies are practically independent of the harmonic index ℓ
- The variations in the frequencies due to different choices of both the highdensity and crust EOS are significant.

 \rightarrow ex) frequencies of first overtones vary the range of 500 – 1200 Hz.

- The effect of the magnetic fields
 - We derive the empirical formula such as $\frac{\ell f_n}{\ell f_n^{(0)}} \sim \left[1 + \ell \alpha_n \left(\frac{B}{B_\mu}\right)^2\right]^{1/2}$, where $B_\mu = 4 \times 10^{15}$ G.
 - For $B > B_{\mu}$, the shift in the frequencies is significant.

Attempt to fit to Observational data

Some of the stiff models fit quite well to the observational data

- SGR 1900+14 : L+NV₂₅ (28, 54, 84, 155 Hz $\rightarrow _{3}t_{0}, _{6}t_{0}, _{9}t_{0}, _{17}t_{0}$)
- SGR 1806–20 : L+DH₁₇ or L+NV₂₀ (18, 29, 92.5, 150, 626.5, 1837 Hz $\rightarrow {}_{2}t_{0}, {}_{3}t_{0}, {}_{9}t_{0}, {}_{15}t_{0}, {}_{l}t_{1}, {}_{l}t_{4}$)

However ...

- it is difficult to explain the observational data of 26 Hz, because this data is very close to the other data of 29 Hz.
- Similarly, the spacing between the 626.5 and 720 Hz in SGR 1806–20 may be too small to be explained by consecutive overtones of crust torsional modes.
- \rightarrow it may be difficult to explain all frequencies by only crust torsional modes!!
- → It may be necessary to consider the global Alfven modes !!

Global Alfven Modes

- Realistic stellar models have very thin solid crust.
 - \rightarrow the frequencies of global modes approaches that of the pure Alfven modes.
- For weak magnetic field,
 - The presence of solid crust has some effect on the global Alfven modes
- For strong magnetic field,
 - The effect diminishes !!
 - → The global modes for strong magnetic field are almost identical to pure Alfven modes.
- The frequency of overtones depend on the value of *l* !!

Comparison with Observational data

All observational data can be explained by global Alfven modes !

- → Owing to the non-degenerate of overtones for different values of ℓ .
- Ex) SGR 1806–20 : $B/B_{\mu} \sim 1.25$ SGR 1900+14 : $B/B_{\mu} \sim 1.94$ for A+DH₁₄ stellar model.
 - \rightarrow for other stellar models it is easy to fit !!
- Of course, this magnetic field is strong.
 - → it is easier to fit for the weaker magnetic fields, because there exist more modes.

Ex) SGR 1806–20 : L+NV₁₈ with $B/B_{\mu} \sim 0.60$

 $\rightarrow {}_{4}a_0, {}_{8}a_0, {}_{10}a_0, {}_{2}a_6, \text{ and } {}_{2}a_{11} \text{ for } f < 150 \text{ Hz}$

The maximum magnetic fields exist !!

• $(0.8 \sim 1.2) \ge 10^{16} [G]$

200

100

150 Hz

92.5 Hz

500

- QPOs in SGRs
- ♦ Some observational data can be explained by crust torsional modes.
 → However, it is difficult to explain all observational data !!
- The overtones of global Alfven modes do not degenerate with *l*.
 → In order to explain the observational data, this is good feature!
- With global Alfven modes, it is possible to explain the all observational data.
- The existence of maximum magnetic field.
 - $(0.8 \sim 1.2) \ge 10^{16} [G]$

Future Works

- Including the ($\ell \pm 2$)-th coupling terms
- Non-axisymmetric perturbation
- Different distribution of back-ground magnetic fields
- Polar perturbation
- Without Cowling approximation
- With the effect of deformation due to the magnetic pressure