ガンマ線バーストでの宇宙線生成と ガンマ線スペクトル

浅野勝晃(国立天文台)

共同研究者:井上進(国立天文台)

将来観測によるGRBモデル検証

- 標準モデルは正しいか?
- 予想されている磁場、 などは正しいか?
- 陽子も加速されているか?

Credit: Hyteo

GLASTが観測するMeV、 GeV観測に期待

モンテカルロ法によるスペクトル計算

- 加速陽子の影響も入れた輻射シミュレーション
- p(n) パイオン生成
- ペアカスケード(シンクロトロン、IC、対生成)
- パイオンやミューオンの冷却過程
- シンクロトロン自己吸収
- 輻射場とカスケード過程が無矛盾に計算される

²
$$L \approx E_{sh} / \Delta t$$
, $\Delta t = R / (c\Gamma^2)$

電子と陽子をべき乗で注入。 Energy Density of Electrons U_e Magnetic Energy Density U_B= f_BU_e Energy Density of Accelerated Protons U_p=U_e ブレークが300keVになるように、 _{e,min}を調整

や磁場が決まる

べき乗からのズレ

磁場が小さいとき

同 =1000

I.C.によるズレ

I.C.が効いても、ベキ乗が良い近時の場合

I.C.による2山スペクトル

2番目のピークとその高さ

同 =1000

磁場と電子が同じエネルギー密度の時

カスケードで歪んだスペクトル

磁場が強いとき

- 様々な原因でスペクトルが歪み、複雑。
- ・二山にはならない。
- •2度に渡って折れ曲がる場合もあり。

磁場が強いとき

: 陽子シンクロトロン : ミューオンシンクロトロン

=1000

ICと µ 粒子のシンクロトロン

ダブルブレーク

これより内側では宇宙線は中間子生成で冷えてしまい、10¹⁹eVを超える宇宙線はできない。

ニュートリノの典型的エネルギー

